1. Alvari, H., Hajibagheri, A., & Sukthankar, G. (2014). Community detection in dynamic social networks: A game-theoretic approach. 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM): ASONAM 2014, 101–107.
  2. Aston, N., & Hu, W. (2017). Community Detection in Dynamic Social Networks. Communications and Network, 43, 124–136. https://doi.org/10.4236/cn.2014.62015
  3. Ghasemian, A., Zhang, P., Clauset, A., Moore, C., & Peel, L. (2016). Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks. Physical Review X, 6(3). https://doi.org/10.1103/PhysRevX.6.031005
  4. Held, P., Krause, B., & Kruse, R. (2016). Dynamic Clustering in Social Networks using Louvain and Infomap Method. https://arxiv.org/abs/1603.02413
  5. Jonnalagadda, A., & Kuppusamy, L. (2016). A survey on game theoretic models for community detection in social networks. Social Network Analysis and Mining, 6(1), 5056. https://doi.org/10.1007/s13278-016-0386-1
  6. Lambiotte, R., Delvenne, J.-C., & Barahona, M. (2014). Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks. IEEE Transactions on Network Science and Engineering, 1(2), 76–90. https://doi.org/10.1109/TNSE.2015.2391998
  7. Matias, C., & Miele, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4), 1119–1141. https://doi.org/10.1111/rssb.12200
  8. Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection. Nature Communications, 5, 4630. https://doi.org/10.1038/ncomms5630
  9. Rosvall, M., & Bergstrom, C. T. (2011). Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems. PLOS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018209
  10. Rota Bulò, S., & Pelillo, M. (2013). A game-theoretic approach to hypergraph clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1312–1327. https://doi.org/10.1109/TPAMI.2012.226
  11. Sarantopoulos, I., Papatheodorou, D., Vogiatzis, D., Tzortzis, G., & Paliouras, G. (2019). TimeRank: A Random Walk Approach for Community Discovery in Dynamic Networks. In L. M. Aiello (Ed.), Complex networks and their applications VII (Vol. 812, pp. 338–350). Springer. https://doi.org/10.1007/978-3-030-05411-3_28
  12. Tshimula, J. M., Chikhaoui, B., & Wang, S. (2019). HAR-search: A Method to Discover Hidden Affinity Relationships in Online Communities. In F. Spezzano, W. Chen, & X. Xiao (Eds.), Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 176–183). ACM. https://doi.org/10.1145/3341161.3342888
  13. Xu, K. S., & Hero, A. O. (2014). Dynamic Stochastic Blockmodels for Time-Evolving Social Networks. IEEE Journal of Selected Topics in Signal Processing, 8(4), 552–562. https://doi.org/10.1109/JSTSP.2014.2310294
  14. Yang, T., Chi, Y., Zhu, S., Gong, Y., & Jin, R. (2011). Detecting communities and their evolutions in dynamic social networks—a Bayesian approach. Machine Learning, 82(2), 157–189. https://doi.org/10.1007/s10994-010-5214-7
  15. Bai, J., Li, L., & Zeng, D. (2019). HiWalk: Learning node embeddings from heterogeneous networks. Information Systems, 81, 82–91. https://doi.org/10.1016/j.is.2018.11.008
  16. Dilmaghani, S., Brust, M. R., Piyatumrong, A., Danoy, G., & Bouvry, P. (2019). Link Definition Ameliorating Community Detection in Collaboration Networks. Frontiers in Big Data, 2, 115. https://doi.org/10.3389/fdata.2019.00022
  17. Fan, M., Wong, K.-C., Ryu, T., Ravasi, T., & Gao, X. (2012). SECOM: A Novel Hash Seed and Community Detection Based-Approach for Genome-Scale Protein Domain Identification. PLOS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039475
  18. Wan, L., Liao, J., & Zhu, X. (2008). CDPM: Finding and Evaluating Community Structure in Social Networks. Advanced Data Mining and Applications, Proceedings, 5139, 620–627.
  19. Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I., & Vicsek, T. (2006). CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics (Oxford, England), 22(8), 1021–1023. https://doi.org/10.1093/bioinformatics/btl039
  20. Cai, H., Zheng, V. W., & Chang, K. C.-C. (2017). A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications. CoRR, abs/1709.07604. http://arxiv.org/abs/1709.07604
  21. Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T.-Y. (2014). Learning Deep Representations for Graph Clustering. AAAI Press.
  22. Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T.-Y. (2014). Learning Deep Representations for Graph Clustering. AAAI Press.
  23. Anandkumar, A., Ge, R., Hsu, D., & Kakade, S. M. (2013). A Tensor Spectral Approach to Learning Mixed Membership Community Models. ArXiv e-Prints.
  24. A. Tabrizi, S., Shakery, A., Asadpour, M., Abbasi, M., & Tavallaie, M. A. (2013). Personalized PageRank Clustering: A graph clustering algorithm based on random walks. Physica A: Statistical Mechanics and Its Applications, 392(22), 5772–5785. https://doi.org/10.1016/j.physa.2013.07.021
  25. Basu, S., & Maulik, U. (2015). Community detection based on strong Nash stable graph partition. Social Network Analysis and Mining, 5(1), 046112. https://doi.org/10.1007/s13278-015-0299-4
  26. Belkin, M., & Niyogi, P. (2001). Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, 585–591. http://dl.acm.org/citation.cfm?id=2980539.2980616
  27. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. https://doi.org/10.1088/1742-5468/2008/10/P10008
  28. Bettinelli, A., Hansen, P., & Liberti, L. (2015). Community detection with the weighted parsimony criterion. Journal of Systems Science and Complexity, 28(3), 517–545. https://doi.org/10.1007/s11424-015-2169-6
  29. Bae, S.-H., Halperin, D., West, J. D., Rosvall, M., & Howe, B. (2017). Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis. ACM Transactions on Knowledge Discovery from Data, 11(3), 1–30. https://doi.org/10.1145/2992785
  30. Belkhiri, Y., Kamel, N., & Drias, H. (2016). A New Betweenness Centrality Algorithm with Local Search for Community Detection in Complex Network. In N. T. Nguyen, B. Trawiński, H. Fujita, & T.-P. Hong (Eds.), Intelligent Information and Database Systems (Vol. 9622, pp. 268–276). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_26
  31. Belkhiri, Y., Kamel, N., & Drias, H. (2019). Multi-swarm BSO Algorithm with Local Search for Community Detection Problem in Complex Environment. In Computational Collective Intelligence (Vol. 11684, pp. 321–332). Springer International Publishing. https://doi.org/10.1007/978-3-030-28374-2_28
  32. Belkhiri, Y., Kamel, N., Drias, H., & Yahiaoui, S. (2017). Bee Swarm Optimization for Community Detection in Complex Network. In Recent Advances in Information Systems and Technologies (Vol. 570, pp. 73–85). Springer International Publishing. https://doi.org/10.1007/978-3-319-56538-5_8
  33. Bhowmick, A. K., Meneni, K., Danisch, M., Guillaume, J.-L., & Mitra, B. (2020). LouvainNE. Proceedings of the 13th International Conference on Web Search and Data Mining, 43–51. https://doi.org/10.1145/3336191.3371800
  34. Basuchowdhuri, P., Roy, R., Anand, S., Srivastava, D. R., Majumder, S., & Saha, S. K. (2015). Spanning tree-based fast community detection methods in social networks. Innovations in Systems and Software Engineering, 11(3), 177–186. https://doi.org/10.1007/s11334-015-0246-6
  35. Brandes, U., & Lerner, J. (2010). Structural Similarity: Spectral Methods for Relaxed Blockmodeling. Journal of Classification, 27(3), 279–306. https://doi.org/10.1007/s00357-010-9062-8
  36. Brutz, M., & Meyer, F. G. (2015). A flexible multiscale approach to overlapping community detection. Social Network Analysis and Mining, 5(1), P09008. https://doi.org/10.1007/s13278-015-0259-z
  37. Benedek Rozemberczki, Ryan Davies, Rik Sarkar, & Charles Sutton. (2019). GEMSEC: Graph Embedding with Self Clustering. ASONAM ’19: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 65–72. https://doi.org/10.1145/3341161.3342890
  38. Cheng, J., Li, L., Leng, M., Lu, W., Yao, Y., & Chen, X. (2016). A divisive spectral method for network community detection. Journal of Statistical Mechanics: Theory and Experiment, 2016(3). https://doi.org/10.1088/1742-5468/2016/03/033403
  39. Chen, W., Liu, Z., Sun, X., & Wang, Y. (2010). A game-theoretic framework to identify overlapping communities in social networks. Data Mining and Knowledge Discovery, 21(2), 224–240. https://doi.org/10.1007/s10618-010-0186-6
  40. Cai, Q., Ma, L., Gong, M., & Tian, D. (2016). A survey on network community detection based on evolutionary computation. International Journal of Bio-Inspired Computation, 8(2), 84. https://doi.org/10.1504/IJBIC.2016.076329
  41. Cai, Y., Shi, C., Dong, Y., Ke, Q., & Wu, B. (2011). A Novel Genetic Algorithm for Overlapping Community Detection. In Advanced Data Mining and Applications (Vol. 7120, pp. 97–108). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25853-4_8
  42. Cai, B., Wang, H., & Zheng, H. (2011). An improved random walk based clustering algorithm for community detection in complex networks. 2011 IEEE International Conference on Systems, Man and Cybernetics - SMC, 2162–2167. https://doi.org/10.1109/ICSMC.2011.6083997
  43. Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C.-C., & Cambria, E. (2017). Learning Community Embedding with Community Detection and Node Embedding on Graphs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management - CIKM ’17, 377–386. https://doi.org/10.1145/3132847.3132925
  44. Chen, L., Zhang, J., & Cai, L.-J. (2018). Overlapping community detection based on link graph using distance dynamics. International Journal of Modern Physics B, 32(03). https://doi.org/10.1142/S0217979218500157
  45. Emmons, S., & Mucha, P. J. (2019). Map equation with metadata: Varying the role of attributes in community detection. Physical Review. E, 100(2-1), 022301. https://doi.org/10.1103/PhysRevE.100.022301
  46. Francisquini, R., Rosset, V., & Nascimento, M. C. V. (2017). GA-LP: A genetic algorithm based on Label Propagation to detect communities in directed networks. Expert Systems with Applications, 74, 127–138. https://doi.org/10.1016/j.eswa.2016.12.039
  47. Gleich, D. F., & Kloster, K. (2016). Seeded PageRank solution paths. European Journal of Applied Mathematics, 27(6), 812–845. https://doi.org/10.1017/S0956792516000280
  48. Gopalan, P. K., & Blei, D. M. (2013). Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14534–14539. https://doi.org/10.1073/pnas.1221839110
  49. Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864. http://doi.acm.org/10.1145/2939672.2939754
  50. Huang, F., Li, X., Zhang, S., Zhang, J., Chen, J., & Zhai, Z. (2017). Overlapping Community Detection for Multimedia Social Networks. IEEE Transactions on Multimedia, 19(8), 1881–1893. https://doi.org/10.1109/TMM.2017.2692650
  51. He, D., Yang, X., Feng, Z., Chen, S., & Fogelman-Soulié, F. (2018). A Network Embedding-Enhanced Approach for Generalized Community Detection. In W. Liu, F. Giunchiglia, & B. Yang (Eds.), Knowledge Science, Engineering and Management (Vol. 11062, pp. 383–395). Springer. https://doi.org/10.1007/978-3-319-99247-1_34
  52. Jia, S., Gao, L., Gao, Y., Nastos, J., Wen, X., Zhang, X., & Wang, H. (2017). Exploring triad-rich substructures by graph-theoretic characterizations in complex networks. Physica A: Statistical Mechanics and Its Applications, 468, 53–69. https://doi.org/10.1016/j.physa.2016.10.021
  53. Jia, S., Gao, L., Gao, Y., & Wang, H. (2014). Anti-triangle centrality-based community detection in complex networks. IET Systems Biology, 8(3), 116–125. https://doi.org/10.1049/iet-syb.2013.0039
  54. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., & Liu, J. (2011). Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 05, -. https://doi.org/10.1088/1742-5468/2011/05/P05031
  55. Kawamoto, T., & Kabashima, Y. (2015). Limitations in the spectral method for graph partitioning: Detectability threshold and localization of eigenvectors. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 91(6), 062803. https://doi.org/10.1103/PhysRevE.91.062803
  56. Karrer, B., & Newman. (2011). Stochastic blockmodels and community structure in networks. PHYSICAL REVIEW E, 83(1), -.
  57. Kumar, P., Gupta, S., & Bhasker, B. (2017). An upper approximation based community detection algorithm for complex networks. Decision Support Systems, 96, 103–118. https://doi.org/10.1016/j.dss.2017.02.010
  58. Kumpula, J. M., Kivela, M., Kaski, K., & Saramaki, J. (2008). Sequential algorithm for fast clique percolation. Physical Review, 78(2), -. https://doi.org/10.1103/PhysRevE.78.026109
  59. Keikha, M. M., Rahgozar, M., & Asadpour, M. (2018). Community aware random walk for network embedding. Knowledge-Based Systems, 148, 47–54. https://doi.org/10.1016/j.knosys.2018.02.028
  60. Liu, J., & Liu, T. (2010). Coarse-grained diffusion distance for community structure detection in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2010(12). https://doi.org/10.1088/1742-5468/2010/12/P12030
  61. Li, Y., Jia, C., & Yu, J. (2015). A parameter-free community detection method based on centrality and dispersion of nodes in complex networks. Physica A: Statistical Mechanics and Its Applications, 438, 321–334. https://doi.org/10.1016/j.physa.2015.06.043
  62. Liu, R., Liu, J., & He, M. (2019). A multi-objective ant colony optimization with decomposition for community detection in complex networks. Transactions of the Institute of Measurement and Control, 41(9), 2521–2534. https://doi.org/10.1177/0142331218804002
  63. Liu, Z., Xiang, B., Guo, W., Chen, Y., Guo, K., & Zheng, J. (2019). Overlapping Community Detection Algorithm Based on Coarsening and Local Overlapping Modularity. IEEE Access, 7, 57943–57955. https://doi.org/10.1109/ACCESS.2019.2912182
  64. Liu, J., Zhong, W., Abbass, H. A., & Green, D. G. (2010). Separated and Overlapping Community Detection in Complex Networks using Multiobjective Evolutionary Algorithms. 2010 IEEE Congress on Evolutionary Computations (CEC), -.
  65. Ma, J., & Fan, J. (2020). Local Optimization for Clique-Based Overlapping Community Detection in Complex Networks. IEEE Access, 8, 5091–5103. https://doi.org/10.1109/ACCESS.2019.2962751
  66. Mavroeidis, D. (2010). Accelerating spectral clustering with partial supervision. Data Min. Knowl. Discov., 21(2), 241–258. https://doi.org/10.1007/s10618-010-0191-9
  67. Ming-Sheng, S., Duan-Bing, C., & Tao, Z. (2010). Detecting Overlapping Communities Based on Community Cores in Complex Networks. Proceedings of the National Academy of Sciences, 27(5), 058901. https://doi.org/10.1088/0256-307X/27/5/058901
  68. Nguyen, T. D., & Tirthapura, S. (Eds.). (2018). V2V: Vector Embedding of a Graph and Applications. https://doi.org/10.1109/IPDPSW.2018.00182
  69. Noveiri, E., Naderan, M., & Alavi, S. E. (2019). ACFC: ant colony with fuzzy clustering algorithm for community detection in social networks. Int. J. Ad Hoc Ubiquitous Comput, 31(1), 36. https://doi.org/10.1504/IJAHUC.2019.099636
  70. Palash Goyal, E. F. (2018). Graph Embedding Techniques, Applications, and Performance: A Survey (Number 151). https://doi.org/10.1016/j.knosys.2018.03.022
  71. Poulin, V., & Théberge, F. (2019). Ensemble Clustering for Graphs. In L. M. Aiello (Ed.), Complex networks and their applications VII (Vol. 812, pp. 231–243). Springer. https://doi.org/10.1007/978-3-030-05411-3\textunderscore 19
  72. Poulin, V., & Théberge, F. (2019). Ensemble clustering for graphs: comparisons and applications. Applied Network Science, 4(1), 1–13. https://doi.org/10.1007/s41109-019-0162-z
  73. Prokhorenkova, L. O., & Tikhonov, A. (2019). Community Detection through Likelihood Optimization: In Search of a Sound Model. In L. Liu & R. White (Eds.), The World Wide Web Conference on - WWW ’19 (pp. 1498–1508). ACM Press. https://doi.org/10.1145/3308558.3313429
  74. Rosvall, M., Axelsson, D., & Bergstrom, C. T. (2009). The map equation. Phys. J. Spec. Top, 178, 13–23. https://doi.org/10.1140/epjst/e2010-01179-1
  75. Rossi, R. A., Di Jin, Kim, S., Ahmed, N. K., Koutra, D., & Lee, J. B. (2019). From Community to Role-based Graph Embeddings. https://doi.org/10.1145/3397191
  76. Saha, S., & Ghrera, S. (2015). Network Community Detection on Metric Space. Algorithms, 8(3), 680–696. https://doi.org/10.3390/a8030680
  77. Shi, C., Cai, Y., Di Fu, Dong, Y., & Wu, B. (2013). A link clustering based overlapping community detection algorithm. Data & Knowledge Engineering, 87, 394–404. https://doi.org/10.1016/j.datak.2013.05.004
  78. Seifikar, M., Farzi, S., & Barati, M. (2020). C-Blondel: An Efficient Louvain-Based Dynamic Community Detection Algorithm. IEEE Transactions on Computational Social Systems, 1–11. https://doi.org/10.1109/TCSS.2020.2964197
  79. Shen, H.-W., & Cheng, X.-Q. (2010). Spectral methods for the detection of network community structure: a comparative analysis. Journal of Statistical Mechanics: Theory and Experiment, 2010(10). https://doi.org/10.1088/1742-5468/2010/10/P10020
  80. Tandon, A., Albeshri, A., Thayananthan, V., Alhalabi, W., & Fortunato, S. (2019). Fast consensus clustering in complex networks. Physical Review. E, 99(4-1), 042301. https://doi.org/10.1103/PhysRevE.99.042301
  81. Tsitsulin, A., Mottin, D., Karras, P., & Müller, E. (2018). VERSE: Versatile Graph Embeddings from Similarity Measures. Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, 539–548. https://doi.org/10.1145/3178876.3186120
  82. Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports, 9(1), 5233. https://doi.org/10.1038/s41598-019-41695-z
  83. van Lierde, H., Chow, T. W. S., & Chen, G. (2020). Scalable Spectral Clustering for Overlapping Community Detection in Large-Scale Networks. IEEE Transactions on Knowledge and Data Engineering, 32(4), 754–767. https://doi.org/10.1109/TKDE.2019.2892096
  84. Wharrie, S., Azizi, L., & Altmann, E. G. (2019). Micro-, meso-, macroscales: The effect of triangles on communities in networks. Physical Review. E, 100(2-1), 022315. https://doi.org/10.1103/PhysRevE.100.022315
  85. Wang, D., Cu, P., & Zhu, W. (2016). Structural Deep Network Embedding. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1225–1234. http://doi.acm.org/10.1145/2939672.2939753
  86. Wu, J., Hou, Y., Jiao, Y., Li, Y., Li, X., & Jiao, L. (2015). Density shrinking algorithm for community detection with path based similarity. Physica A: Statistical Mechanics and Its Applications, 433, 218–228. https://doi.org/10.1016/j.physa.2015.03.044
  87. Wang, X. F., Liu, G., Li, J., & Nees, J. P. (2017). Locating Structural Centers: A Density-Based Clustering Method for Community Detection. PLOS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169355
  88. Wu, P., & Pan, L. (2015). Multi-objective community detection based on memetic algorithm. PLOS ONE, 10(5), e0126845. https://doi.org/10.1371/journal.pone.0126845
  89. Xiang, B., Guo, K., Liu, Z., & Liao, Q. (2019). An Overlapping Community Detection Algorithm Based on Triangle Coarsening and Dynamic Distance. In Computer Supported Cooperative Work and Social Computing (Vol. 917, pp. 285–300). Springer Singapore. https://doi.org/10.1007/978-981-13-3044-5_21
  90. Yang, J., & Leskovec, J. (2014). Structure and Overlaps of Ground-Truth Communities in Networks. ACM Transactions on Intelligent Systems and Technology, 5(2), 1–35. https://doi.org/10.1145/2594454
  91. Zhou, L., Lü, K., Yang, P., Wang, L., & Kong, B. (2015). An approach for overlapping and hierarchical community detection in social networks based on coalition formation game theory. Expert Systems with Applications, 42(24), 9634–9646. https://doi.org/10.1016/j.eswa.2015.07.023
  92. Zhou, X., Liu, Y., Zhang, J., Liu, T., & Di Zhang. (2015). An ant colony based algorithm for overlapping community detection in complex networks. Physica A: Statistical Mechanics and Its Applications, 427, 289–301. https://doi.org/10.1016/j.physa.2015.02.020
  93. Zhai, X., Zhou, W., Fei, G., Lu, C., Wen, S., & Hu, G. (2019). Edge-based stochastic network model reveals structural complexity of edges. Future Generation Computer Systems, 100, 1073–1087. https://doi.org/10.1016/j.future.2019.05.047
  94. Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., & Vesci, G. (2013). Choosing the right crowd:  expert finding in social networks. The 16th International Conference on Extending Database Technology, 637–648. https://doi.org/10.1145/2452376.2452451
  95. Bouguessa, M., Dumoulin, B., & Wang, S. (2008). Identifying Authoritative Actors in Question-answering Forums: The Case of Yahoo! Answers. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08), 866–874. https://doi.org/10.1145/1401890.1401994
  96. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165–1188.
  97. Deng, H., King, I., & Lyu, M. R. (2008). Formal models for expert finding on DBLP bibliography data. Eight IEEE International Conference on Data Mining: ICDM’08, 163–172.
  98. Guy, I., Avraham, U., Carmel, D., Ur, S., Jacovi, M., & Ronen, I. Mining Expertise and Interests from Social Media. In Proceedings of the 22nd International Conference on World Wide Web (pp. 515–526).
  99. Kretschmer, M., Goschlberger, B., & Klamma, R. (2019). Using Topical Networks to Detect Editor Communities in Wikipedias. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS 2019), 102–109. https://doi.org/10.1109/SNAMS.2019.8931865
  100. Klamma, R. (2013). Community Learning Analytics – Challenges and Opportunities. In J.-F. Wang & R. W. H. Lau (Eds.), Advances in Web-Based Learning: ICWL 2013 (Vol. 8167, pp. 284–293). Springer. https://doi.org/10.1007/978-3-642-41175-5_29
  101. Shahriari, M., Parekodi, S., & Klamma, R. (2015). Community-aware Ranking Algorithms for Expert Identification in Question-answer Forums. Proceedings of the 15th International Conference on Knowledge Technologies and Data-Driven Business, 1–8. https://doi.org/10.1145/2809563.2809592
  102. Zhang, J., Ackerman, M. S., & Adamic, L. A. (2007). Expertise Networks in Online Communities: Structure and Algorithms. In International World Wide Web Conference Committee (Ed.), Proceedings of the 16th International World Wide Web Conference (WWW’07) (pp. 221–230). ACM.
  103. Zhu, H., Cao, H., Xiong, H., Chen, E., & Tian, J. (2011). Towards Expert Finding by Leveraging Relevant Categories in Authority Ranking. Proceedings of the 20th ACM International Conference on Information and Knowledge Management, 2221–2224. https://doi.org/10.1145/2063576.2063931
  104. Moslemi Naeni, L., Berretta, R., & Moscato, P. (2014). MA-Net: A reliable memetic algorithm for community detection by modularity optimization (Springer-Verlag Berlin Heidelberg, Ed.). https://www.researchgate.net/profile/Leila_Naeni/publication/269519801_MA-Net_A_Reliable_Memetic_Algorithm_for_Community_Detection_by_Modularity_Optimization/links/5577e5fa08aeacff200051ef/MA-Net-A-Reliable-Memetic-Algorithm-for-Community-Detection-by-Modularity-Optimization.pdf
  105. Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L. J., Bastuck, S., Dümpelfeld, B., Edelmann, A., Heurtier, M.-A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.-M., Schelder, M., Schirle, M., … Superti-Furga, G. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631–636. https://doi.org/10.1038/nature04532
  106. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., Peregrín-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung, A., … Greenblatt, J. F. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637–643. https://doi.org/10.1038/nature04670
  107. Smith, M. A., & Kollock, P. (Eds.). (1999). Communities in Cyberspace. Routledge.
  108. Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764. https://doi.org/10.1038/nature09182
  109. Pizzuti, C. (2008). GA-Net: A Genetic Algorithm for Community Detection in Social Networks. In G. Rudolph, T. Jansen, N. Beume, S. Lucas, & C. Poloni (Eds.), Parallel Problem Solving from Nature – PPSN X (pp. 1081–1090). Springer Berlin Heidelberg.
  110. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
  111. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002
  112. Maoguo Gong, Qing Cai, Yangyang Li, & Jingjing Ma. (2012). An improved memetic algorithm for community detection in complex networks. 2012 IEEE Congress on Evolutionary Computation, 1–8. https://doi.org/10.1109/CEC.2012.6252971
  113. Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81(4 Pt 2), 046106. https://doi.org/10.1103/PhysRevE.81.046106
  114. Karampelas, P., Kawash, J., & Özyer, T. (Eds.). (2019). From Security to Community Detection in Social Networking Platforms. Springer International Publishing. https://doi.org/10.1007/978-3-030-11286-8
  115. Wenger, E. C. (1998). Communities of Practice: Learning, Meaning, and Identity. Cambridge University Press.
  116. Strehl, A., & Ghosh, J. (2002). Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions. The Journal of Machine Learning Research, 3, 583–617.
  117. Conrad Lee, Fergal Reid, Aaron McDaid, Neil Hurley. (2010). Detecting highly overlapping community structure by greedy clique expansion. https://arxiv.org/abs/1002.1827
  118. Zhenping Li, Shihua Zhang, Rui-Sheng Wang, Xiang-Sun Zhang, & Luonan Chen. (2007). Quantitative function for community detection. Physical Review, 77. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.77.036109
  119. Xin-Gang Li, Zi-You Gao, Ke-Ping Li, & Xiao-Mei Zhao. (2007). Relationship between microscopic dynamics in traffic flow and complexity in networks. PHYSICAL REVIEW A, 76(1). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.016110
  120. X. S. Zhang, R. S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, & L. Chen. (2009). Modularity optimization in community detection of complex networks. 87(3). http://iopscience.iop.org/article/10.1209/0295-5075/87/38002/meta
  121. Zhang, J., Zhang, S., & Zhang, X.-S. (2008). Detecting community structure in complex networks based on a measure of information discrepancy. Physica A, 387(7), 1675–1682. https://doi.org/10.1016/j.physa.2007.10.061
  122. Ginestra, B., Pin, P., & Marsili, M. (2009). Assessing the relevance of node features for network structure. Proceedings of The National Academy of Sciences of the United States of America, 106(28), 11433–11438. http://www.pnas.org/content/106/28/11433.abstract
  123. Ancichinetti, A., & Fortunato, S. (2009). Community Detection Algorithms: A Comparative Analysis. Physical Review, 80(5).
  124. Baumes, J., Goldberg, M., & Magdon-Ismail, M. (2005). Efficient Identification of Overlapping Communities. In P. Kantor, G. Muresan, F. Roberts, D. D. Zeng, F.-Y. Wang, H. Chen, & R. C. Merkle (Eds.), Intelligence and Security Informatics (Vol. 3495, pp. 27–36). Springer Berlin Heidelberg. https://doi.org/10.1007/11427995\backslash\textunderscore 3
  125. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. https://doi.org/10.1088/1742-5468/2008/10/P10008
  126. Clauset, A., Newman, Mark E. J., & Moore, C. (2004). Finding community structure in very large networks. Phys. Rev., E 70(6).
  127. Collins, L. M., & Dent, C. W. (1988). Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions. Multivariate Behavioral Research, 23(2), 231–242.
  128. Conrad Lee, Fergal Reid, Aaron McDaid, Neil Hurley. (2010). Detecting highly overlapping community structure by greedy clique expansion. https://arxiv.org/abs/1002.1827
  129. Danon, L., Duch, J., Díaz-Guilera, A., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, P09008. https://doi.org/10.1088/1742-5468/2005/09/P09008
  130. Chen, D., Fu, Y., & Shang, M. (2009). An Efficient Algorithm for Overlapping Community Detection in Complex Networks. Intelligent Systems, 2009. GCIS ’09. WRI Global Congress On, 1, 244–247. https://doi.org/10.1109/GCIS.2009.68
  131. Di Jin, Yang, B., Baquero, C., Liu, D., He, D., & Liu, J. (2011). A Markov random walk under constraint for discovering overlapping communities in complex networks. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. https://doi.org/10.1088/1742-5468/2011/05/P05031
  132. Estrada, E., & Hatano, N. (2009). Communicability graph and community structures in complex networks. Appl Math Comput (Applied Mathematics And COMPUTATION), 214(2), 500–511. https://doi.org/10.1016/j.amc.2009.04.024
  133. Evans, T. S. (2010). Clique graphs and overlapping communities. Journal of Statistical Mechanics: Theory and Experiment, 2010(12). https://doi.org/10.1088/1742-5468/2010/12/P12037
  134. Evans, T. S., & Lambiotte, R. (2010). Line graphs of weighted networks for overlapping communities. Eur Phys J B (European Physical Journal B), 77(2), 265–272. https://doi.org/10.1140/epjb/e2010-00261-8
  135. Fan, M., Wong, K.-C., Ryu, T., Ravasi, T., & Gao, X. (2012). SECOM: A Novel Hash Seed and Community Detection Based-Approach for Genome-Scale Protein Domain Identification. PLOS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039475
  136. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., & Arenas, A. (2003). Self-similar community structure in a network of human interactions. American Physical Society, 68(6), 065103. https://doi.org/10.1103/PhysRevE.68.065103
  137. Gregory, S. (2008). A Fast Algorithm to Find Overlapping Communities in Networks. In W. Daelemans, B. Goethals, & K. Morik (Eds.), Machine Learning and Knowledge Discovery in Databases (Vol. 5211, pp. 408–423). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-87479-9\backslash\textunderscore 45
  138. Gregory, S. (2010). Fuzzy overlapping communities in networks. CoRR, abs/1010.1523.
  139. Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New J Phys (New Journal Of Physics), 12(10), 1–21. https://doi.org/10.1088/1367-2630/12/10/103018
  140. Gregory, S. (2011). Fuzzy overlapping communities in networks. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. https://doi.org/10.1088/1742-5468/2011/02/P02017
  141. Havemann, F., Heinz, M., Struck, A., & Gläser, J. (2011). Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels. Journal of Statistical Mechanics: Theory and Experiment. https://doi.org/10.1088/1742-5468/2011/01/P01023
  142. Huang, J., Sun, H., Han, J., & Feng, B. (2011). Density-based shrinkage for revealing hierarchical and overlapping community structure in networks. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 390(11), 2160–2171. https://doi.org/10.1016/j.physa.2010.10.040
  143. Yang, J., & Leskovec, J. (2012). Community-Affiliation Graph Model for Overlapping Network Community Detection. Data Mining (ICDM), 2012 IEEE 12th International Conference On, 1170–1175. https://doi.org/10.1109/ICDM.2012.139
  144. Kannan, R., Vempala, S., & Vetta, A. (2004). On Clusterings: Good, Bad and Spectral. J. ACM, 51(3), 497–515. https://doi.org/10.1145/990308.990313
  145. Lancichinetti, A., & Fortunato, S. (2009). Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review, 80(1), 016118. https://doi.org/10.1103/PhysRevE.80.016118
  146. Leskovec, J., Kleinberg, J. M., & Faloutsos, C. (2005). Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 177–187. https://doi.org/10.1145/1081870.1081893
  147. Leskovec, J., Lang, K. J., & Mahoney, M. (2010). Empirical comparison of algorithms for network community detection. In M. Rappa, P. Jones, J. Freire, & S. Chakrabarti (Eds.), Proceedings of the 19th international conference on World Wide Web (p. 631). https://doi.org/10.1145/1772690.1772755
  148. Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the Overlapping and Hierarchical Community Structure in Complex Networks. New J Phys (New Journal Of Physics), 11(3), 033015. https://doi.org/10.1088/1367-2630/11/3/033015
  149. Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 78(4 Pt 2), 046110. https://doi.org/10.1103/PhysRevE.78.046110
  150. Li, H.-J., Wang, Y., Wu, L.-Y., Liu, Z.-P., Chen, L., & Zhang, X.-S. (2012). Community structure detection based on Potts model and network’s spectral characterization. EPL, 97(4), 48005. https://doi.org/10.1209/0295-5075/97/48005
  151. Li, H.-J., Zhang, J., Liu, Z.-P., Chen, L., & Zhang, X.-S. (2012). Identifying overlapping communities in social networks using multi-scale local information expansion. The European Physical Journal B, 85(6). https://doi.org/10.1140/epjb/e2012-30015-5
  152. McAuley, J., & Leskovec, J. (2012). Learning to Discover Social Circles in Ego Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (NIPS 2012) (pp. 548–556). http://books.nips.cc/papers/files/nips25/NIPS2012_0272.pdf
  153. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science, 328(5980), 876–878. https://doi.org/10.1126/science.1184819
  154. Newman, Mark E. J. (2003). Mixing patterns in networks. https://doi.org/10.1103/PhysRevE.67.026126
  155. Newman, Mark E. J. (2004). Detecting community structure in networks. The European Physical Journal B - Condensed Matter, 38(2), 321–330. https://doi.org/10.1140/epjb/e2004-00124-y
  156. Newman, Mark E. J. (2004). Fast algorithm for detecting community structure in networks. PHYSICAL REVIEW E, 69(6), 066133. https://doi.org/10.1103/PhysRevE.69.066133
  157. Chen, D., Fu, Y., & Shang, M. (2009). A fast and efficient heuristic algorithm for detecting community structures in complex networks. Physica A: Statistical Mechanics and Its Applications, 388(13), 2741–2749.
  158. Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72(2), 027104.
  159. Newman, Mark E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74(3). https://doi.org/10.1103/PhysRevE.74.036104
  160. Newman, Mark E. J. (2006). Modularity and Community Structure in Networks. Proceedings of The National Academy of Sciences of the United States of America, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103
  161. Nicosia, V., Mangioni, G., Carchiolo, V., & Malgeri, M. (2009). Extending the definition of modularity to directed graphs with overlapping communities. Journal of Statistical Mechanics: Theory and Experiment, 2009(03), P03024. https://doi.org/10.1088/1742-5468/2009/03/P03024
  162. Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818. https://doi.org/10.1038/nature03607
  163. Pham, M., Kovachev, D., Cao, Y., & Klamma, R. (2012). Enhancing Academic Event Participation with Context-aware and Social Recommendations. In Proceeding of The 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012) (pp. 457–464).
  164. Preece, J. (2000). Online Communities: Designing Usability and Supporting Socialbility. John Wiley & Sons, Inc.
  165. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Phys. Rev. E, 74(1), 016110.
  166. Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123. https://doi.org/10.1073/pnas.0706851105
  167. Shahriari, M., Haefele, S., & Klamma, R. (2016). Contextualized versus Structural Overlapping Communities in Social Media. International Conference on Knowledge Technologies and Data-Driven Business (i-KNOW).
  168. Strehl, A., & Ghosh, J. (2002). Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions. The Journal of Machine Learning Research, 3, 583–617.
  169. Šubelj, L., & Bajec, M. (2013). Model of Complex Networks Based on Citation Dynamics. Proceedings of the 22nd International Conference on World Wide Web, 527–530. https://doi.org/10.1145/2487788.2487987
  170. Tönnies, F. (1988). Gemeinschaft und Gesellschaft (Neudruck der 8. Auflage von 1935). Wissenschaftliche Buchgesellschaft.
  171. W. Zachary. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.
  172. Wang, X., Jiao, L., & Wu, J. (2009). Adjusting from disjoint to overlapping community detection of complex networks. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 388(24), 5045–5056. https://doi.org/10.1016/j.physa.2009.08.032
  173. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440–442.
  174. Wu, Z., Lin, Y., Wan, H., Tian, S., & Hu, K. (2012). Efficient overlapping community detection in huge real-world networks. Physica A (Physica A-Statistical Mechanics And Its Applications), 391(7), 2475–2490. https://doi.org/10.1016/j.physa.2011.12.019
  175. Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping Community Detection in Networks: the State of the Art and Comparative Study. CoRR, abs/1110.5813.
  176. Xie, J., Szymanski, B. K., & Liu, X. (2011). SLPA: Uncovering Overlapping Communities in Social Networks via A Speaker-listener Interaction Dynamic Process. Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference On.
  177. Yang, J., & Leskovec, J. (2013). Overlapping community detection at scale: a nonnegative matrix factorization approach. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, 587. https://doi.org/10.1145/2433396.2433471
  178. Zachary, W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.
  179. Zhang, Y., Wang, J., Wang, Y., & Zhou, L. Parallel Community Detection on Large Networks with Propinquity Dynamics. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 997–1005.
  180. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L.
  181. The Gene Ontology Consortium. (2008). The Gene Ontology project in 2008. NUCLEIC ACIDS RESEARCH, 36(D440-D444).
  182. Li, D. (2008). Synchronization interfaces and overlapping communities in complex networks. Phys Rev Lett, 101(168701).
  183. Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895–900.
  184. Yu, H. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322, 104–110.
  185. Feist A.M. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 orfs and thermodynamic information. MOLECULAR SYSTEMS BIOLOGY, 3, 121.
  186. Evans T.S., & Lambiotte R. (2009). Edge partitions and overlapping communities in complex networks. http://arxiv.org/abs/0912.4389
  187. Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitioms and overlapping communities. Phys. Rev. E, 80(016105).
  188. Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 104(1), 36–41. https://doi.org/10.1073/pnas.0605965104
  189. González, M. C., César A. Hidalgo, & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453, 799–782. http://merkur.informatik.rwth-aachen.de/bscw/bscw.cgi/d2959388/%5bGHBa08%5dUnderstanding%20individual%20human%20mobility%20patterns.pdf
  190. Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A comparative analysis. PHYSICAL REVIEW E, 80(5). https://doi.org/10.1103/PhysRevE.80.056117
  191. Newman, Mark E. J., & Girvan, M. (2004). Finding and Evaluating Community Structure in Networks. Physical Review, 69(026113).
  192. Jukka-Pekka Onnela, Jari Saramäki, Jörkki Hyvönen, Gábor Szabó, David Lazer, Kimmo Kaski, Janos Kertész, & Albert-László Barabasi. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Science, 104, 7332–7336.
  193. Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667. https://doi.org/10.1038/nature05670
  194. Chen, D., Shang, M., Lv, Z., & Fu, Y. (2010). Detecting overlapping communities of weighted networks via a local algorithm. Physica A: Statistical Mechanics and Its Applications, 389(19), 4177–4187.
  195. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 101(9), 2658–2663. https://doi.org/10.1073/pnas.0400054101
  196. Reichardt, J., & Bornholdt, S. (2004). Detecting fuzzy community structures in complex networks with a Potts model. Physical Review Letters, 93(21). https://doi.org/10.1103/PhysRevLett.93.218701
  197. Yong-Yeul, A., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 09182.
  198. Xie, J., Szymanski, B. K., & Liu, X. (2011). Slpa: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference On, 344–349.
  199. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.
  200. Xie, J., & Szymanski, B. (2012). Towards linear time overlapping community detection in social networks. Advances in Knowledge Discovery and Data Mining, 25–36.
  201. Xie, J., & Szymanski, B. K. (2013). Labelrank: A stabilized label propagation algorithm for community detection in networks. Network Science Workshop (NSW), 2013 IEEE 2nd, 138–143.
  202. Gregory, S. (2011). Fuzzy overlapping communities in networks. Journal of Statistical Mechanics: Theory and Experiment, 2011(02), P02017.
  203. Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015.
  204. Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818.
  205. Baumes, J., Goldberg, M. K., Krishnamoorthy, M. S., Magdon-Ismail, M., & Preston, N. (2005). Finding communities by clustering a graph into overlapping subgraphs. IADIS AC, 5, 97–104.
  206. Gregory, S. (2007). An algorithm to find overlapping community structure in networks. Knowledge Discovery in Databases: PKDD 2007, 91–102.
  207. Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New Journal of Physics, 12(10), 103018.
  208. Zhang, S., Wang, R.-S., & Zhang, X.-S. (2007). Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and Its Applications, 374(1), 483–490.
  209. Nepusz, T., Petróczi, A., Négyessy, L., & Bazsó, F. (2008). Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E, 77(1), 016107.
  210. Psorakis, I., Roberts, S., & Sheldon, B. (2010). Efficient bayesian community detection using non-negative matrix factorisation. ArXiv Preprint ArXiv:1009.2646.
  211. Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764.
  212. Evans, T. S., & Lambiotte, R. (2010). Line graphs of weighted networks for overlapping communities. The European Physical Journal B-Condensed Matter and Complex Systems, 77(2), 265–272.
  213. Havemann, F., Heinz, M., Struck, A., & Gläser, J. (2011). Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels. Journal of Statistical Mechanics: Theory and Experiment, 2011(01), P01023.
  214. Li, H.-J., Zhang, J., Liu, Z.-P., Chen, L., & Zhang, X.-S. (2012). Identifying overlapping communities in social networks using multi-scale local information expansion. The European Physical Journal B-Condensed Matter and Complex Systems, 85(6), 1–9.
  215. Murray, G., Carenini, G., & Ng, R. (2012). Using the omega index for evaluating abstractive community detection. Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization, 10–18.
  216. Chen, Z., Li, X., & Bruna, J. (2018). Supervised Community Detection with Line Graph Neural Networks. ArXiv:1705.08415 [Stat]. http://arxiv.org/abs/1705.08415
  217. Tran, P. V. (2018). Learning to Make Predictions on Graphs with Autoencoders. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 237–245. https://doi.org/10.1109/DSAA.2018.00034
  218. Khan, R. A., & Kleinsteuber, M. (2020). Epitomic Variational Graph Autoencoder. ArXiv:2004.01468 [Cs, Stat]. http://arxiv.org/abs/2004.01468
  219. Han, F. (2019). Tutorial on Variational Graph Auto-Encoders. In Medium. https://towardsdatascience.com/tutorial-on-variational-graph-auto-encoders-da9333281129
  220. Bae, S.-H., Halperin, D., West, J., Rosvall, M., & Howe, B. (2013). Scalable flow-based community detection for large-scale network analysis. 2013 IEEE 13th International Conference on Data Mining Workshops, 303–310.
  221. Lambiotte, R., Sinatra, R., Delvenne, J.-C., Evans, T. S., Barahona, M., & Latora, V. (2011). Flow graphs: Interweaving dynamics and structure. Physical Review E, 84(1), 017102.
  222. Moosavi, S. A., Jalali, M., Misaghian, N., Shamshirband, S., & Anisi, M. H. (2017). Community detection in social networks using user frequent pattern mining. Knowledge and Information Systems, 51(1), 159–186.
  223. Martin Rosvall, C. arl T. B. MapEquation. https://www.mapequation.org/apps/MapDemo.html
  224. Sun, Z., Wang, B., Sheng, J., Yu, Z., & Shao, J. (2018). Overlapping community detection based on information dynamics. IEEE Access, 6, 70919–70934.
  225. Shahriari, M., Krott, S., & Klamma, R. (2015). Disassortative degree mixing and information diffusion for overlapping community detection in social networks (dmid). Proceedings of the 24th International Conference on World Wide Web, 1369–1374.
  226. Chen, D., Fu, Y., & Shang, M. (2009). An efficient algorithm for overlapping community detection in complex networks. 2009 WRI Global Congress on Intelligent Systems, 1, 244–247.
  227. Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008.
  228. Evans, T. S. (2010). Clique graphs and overlapping communities. Journal of Statistical Mechanics: Theory and Experiment, 2010(12), P12037.
  229. Fan, M., Wong, K. C., Ryu, T., Ravasi, T., & Gao, X. (2012). SECOM: A Novel Hash Seed and Community Detection Based-Approach for Genome-Scale Protein.
  230. Girvan, M., & Newman, M. E. J. (2001). Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99(cond-mat/0112110), 8271–8276.
  231. Gregory, S. (2008). A fast algorithm to find overlapping communities in networks. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 408–423.
  232. Huang, J., Sun, H., Han, J., & Feng, B. (2011). Density-based shrinkage for revealing hierarchical and overlapping community structure in networks. Physica A: Statistical Mechanics and Its Applications, 390(11), 2160–2171.
  233. Leskovec, J., & Mcauley, J. J. (2012). Learning to discover social circles in ego networks. Advances in Neural Information Processing Systems, 539–547.
  234. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., & Liu, J. (2011). A Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2011(05), P05031.
  235. Lancichinetti, A., & Fortunato, S. (2009). Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E, 80(1), 016118.
  236. Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: densification laws, shrinking diameters and possible explanations. Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 177–187.
  237. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.
  238. Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026126.
  239. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.
  240. Pham, M. C., Kovachev, D., Cao, Y., Mbogos, G. M., & Klamma, R. (2012). Enhancing academic event participation with context-aware and social recommendations. 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 464–471.
  241. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., & Arenas, A. (2003). Self-similar community structure in a network of human interactions. Physical Review E, 68(6), 065103.
  242. Preece, J., & Preece, J. (2000). Online communities: Designing usability, supporting sociability.
  243. Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3(Dec), 583–617.
  244. Nicosia, V., Mangioni, G., Carchiolo, V., & Malgeri, M. (2009). Extending the definition of modularity to directed graphs with overlapping communities. Journal of Statistical Mechanics: Theory and Experiment, 2009(03), P03024.
  245. Stanoev, A., Smilkov, D., & Kocarev, L. (2011). Identifying communities by influence dynamics in social networks. Physical Review E, 84(4), 046102.
  246. Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473.
  247. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440–442.
  248. Wu, Z., Lin, Y., Wan, H., Tian, S., & Hu, K. (2012). Efficient overlapping community detection in huge real-world networks. Physica A: Statistical Mechanics and Its Applications, 391(7), 2475–2490.
  249. Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detection in networks: The state-of-the-art and comparative study. Acm Computing Surveys (Csur), 45(4), 1–35.
  250. Zhang, Y., Wang, J., Wang, Y., & Zhou, L. (2009). Parallel community detection on large networks with propinquity dynamics. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 997–1006.
  251. Noveiri, E., Naderan, M., & Alavi, S. E. (2015). Community detection in social networks using ant colony algorithm and fuzzy clustering. 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), 73–79.
  252. Javadi, S. H. S., Khadivi, S., Shiri, M. E., & Xu, J. (2014). An ant colony optimization method to detect communities in social networks. 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 200–203.
  253. Borkar, K., & Sahare, V. (2015). Community network based sharing data in wireless network by using ant colony optimization. 2015 International Conference on Communications and Signal Processing (ICCSP), 1564–1568.
  254. https://www.youtube.com/watch?v=wfD5xlEcmuQ
  255. https://moodle.rwth-aachen.de/pluginfile.php/915071/mod_resource/content/1/Mathmatische%20Grundlagen%20von%20OCD%20Algorithmen.pdf
  256. https://de.wikipedia.org/wiki/Ameisenalgorithmus
  257. Tabrizi, S. A., Shakery, A., Asadpour, M., Abbasi, M., & Tavallaie, M. A. (2013). Personalized pagerank clustering: A graph clustering algorithm based on random walks. Physica A: Statistical Mechanics and Its Applications, 392(22), 5772–5785.
  258. https://de.wikipedia.org/wiki/Random_Walk
  259. https://users.iit.demokritos.gr/ gtzortzi/docs/publications/TimeRank_Proceedings_Paper.pdf
  260. https://www.cs.cmu.edu/ avrim/598/chap5only.pdf
  261. https://www.cs.princeton.edu/ chazelle/courses/BIB/pagerank.htm
  262. https://www.mit.edu/ kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm
  263. https://functions.wolfram.com/Constants/Pi/visualizations/2/ShowAll.html
  264. http://www.ccs.northeastern.edu/home/daikeshi/notes/PageRank.pdf
  265. https://codispatch.blogspot.com/2015/12/java-program-implement-google-PageRank-algorithm.html?m=1
  266. https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/random-walk/
  267. https://ocw.mit.edu/courses/mathematics/18-366-random-walks-and-diffusion-fall-2006/lecture-notes/lec01.pdf
  268. http://cs.rpi.edu/ szymansk/fns.18/slides/22.3_Presentation_2018_Fast_Algorithm_Comm_Det.pdf
  269. https://sevdesk.de/lexikon/pagerank/
  270. Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
  271. Donath, W. E., & Hoffman, A. J. (2003). Lower bounds for the partitioning of graphs. In Selected Papers Of Alan J Hoffman: With Commentary (pp. 437–442). World Scientific.
  272. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 298–305.
  273. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.
  274. Meila, M., & Shi, J. (2001). A Random Walks View of Spectral Segmentation.
  275. Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 849–856.
  276. Von Luxburg, U., Belkin, M., & Bousquet, O. (2008). Consistency of spectral clustering. The Annals of Statistics, 555–586.
  277. Karyotis, V., Tsitseklis, K., Sotiropoulos, K., & Papavassiliou, S. (2018). Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications. Sensors (Basel, Switzerland), 18(4), 1205. https://doi.org/10.3390/s18041205
  278. Li, Y., Xia, H., Zhang, R., Hu, B., & Cheng, X. (2020). A Novel Community Detection Algorithm Based on Paring, Splitting and Aggregating in Internet of Things. IEEE Access, 8, 123938–123951. https://doi.org/10.1109/ACCESS.2020.3006029
  279. Xu, X., Hu, N., Trovati, M., Ray, J., Palmieri, F., & Pandey, H. M. (2020). DLCD-CCE: A Local Community Detection Algorithm for Complex IoT Networks. IEEE Internet of Things Journal, 7(5), 4607–4615. https://doi.org/10.1109/JIOT.2019.2960743
  280. Jain, A. K., & Murty, M. N. (01-SEP-1999). Data clustering: A review. ACM Comput. Surv.
  281. Chen, J., Chen, L., Chen, Y., Zhao, M., Yu, S., Xuan, Q., & Yang, X. (2019). GA-Based Q-Attack on Community Detection. IEEE Transactions on Computational Social Systems, 6(3), 491–503. https://doi.org/10.1109/TCSS.2019.2912801
  282. Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. 590–614. https://doi.org/10.1016/S0378-4371(02)00736-7
  283. Frank, I., H.; Frisch. (1970). Analysis and Design of Survivable Networks. IEEE Trans. Commun. (IEEE Transactions on Communications), 5, 501–519. https://doi.org/10.1109/TCOM.1970.1090419
  284. Albert; Jeong; Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 6794, 378–382. https://doi.org/10.1038/35019019
  285. Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S., & Herrmann, H. J. (2011). Mitigation of malicious attacks on networks. Proceedings of the National Academy of Sciences, 10, 3838–3841. https://doi.org/10.1073/pnas.1009440108
  286. Paul, G., Sreenivasan, S., & Stanley, H. E. (2005). Resilience of Complex Networks to Random Breakdown // Resilience of complex networks to random breakdown. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 5 Pt 2, 1–6. https://doi.org/10.1038/35019019
  287. Liu, J., Zhou, M., Wang, S., & Liu, P. (2017). A comparative study of network robustness measures. Front. Comput. Sci. (Frontiers of Computer Science), 4. https://doi.org/10.1007/s11704-016-6108-z
  288. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., & Mangioni, G. (2019). Network robustness improvement via long-range links. Computational Social Networks, 1. https://doi.org/10.1186/s40649-019-0073-2
  289. Newman, M., M. E. J.; Girvan. (2004). Finding and evaluating community structure in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2. https://doi.org/10.1103/PhysRevE.69.026113
  290. Yang, Y., Li, Z., Chen, Y., Zhang, X., & Wang, S. (2015). Improving the Robustness of Complex Networks with Preserving Community Structure. PLOS ONE (PLOS ONE), 2. https://doi.org/10.1371/journal.pone.0116551
  291. Beygelzimer, A., Grinstein, G., Linsker, R., & Rish, I. (2005). Improving network robustness by edge modification. Physica A: Statistical Mechanics and Its Applications, 3, 593–612. https://doi.org/10.1016/j.physa.2005.03.040
  292. Jiang, Z., Li, J., Ma, J., & Yu, P. S. (2020). Similarity-based and Sybil Attack Defended Community Detection for Social Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 1. https://doi.org/10.1109/TCSII.2020.3001182
  293. Bellingeri, M., Cassi, D., & Vincenzi, S. (2014). Efficiency of attack strategies on complex model and real-world networks. Physica A: Statistical Mechanics and Its Applications, 414, 174–180. https://doi.org/https://doi.org/10.1016/j.physa.2014.06.079
  294. Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology, 1(1), 49–80. https://doi.org/10.1080/0022250X.1971.9989788
  295. Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex networks. Physical Review E, 65(5), 056109.
  296. Yang, Y., Li, Z., Chen, Y., Zhang, X., & Wang, S. (2015). Improving the Robustness of Complex Networks with Preserving Community Structure. PLOS ONE, 10(2), 1–14. https://doi.org/10.1371/journal.pone.0116551
  297. Aaron, S., & Joanna, B. (2012). Twitter Use 2012. Pew Research Center and Pew Internet & American Life Project.
  298. Arceneaux, N., & Schmitz Weiss, A. (2010). Seems stupid until you try it: press coverage of Twitter, 2006-9. New Media & Society, 12(8), 1262–1279. https://doi.org/10.1177/1461444809360773
  299. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Unpublished. https://doi.org/10.13140/2.1.1341.1520
  300. Gligorić, K., Anderson, A., & West, R. (2018). How Constraints Affect Content: The Case of Twitter’s Switch from 140 to 280 Characters. https://arxiv.org/pdf/1804.02318
  301. Kratzke, N. (2021). Monthly Samples of German Tweets. Zenodo. https://doi.org/10.5281/ZENODO.4412213
  302. Scheffler, T. (2014). A German Twitter Snapshot. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), 2284–2289. http://www.lrec-conf.org/proceedings/lrec2014/pdf/1146_Paper.pdf
  303. Alsini, A., Datta, A., & Du Huynh, Q. (2020). On Utilizing Communities Detected From Social Networks in Hashtag Recommendation. IEEE Transactions on Computational Social Systems, 7(4), 971–982. https://doi.org/10.1109/TCSS.2020.2988983
  304. Bryden, J., Funk, S., & Jansen, V. A. A. (2013). Word usage mirrors community structure in the online social network Twitter. EPJ Data Science, 2(1). https://doi.org/10.1140/epjds15
  305. Cataldi, M., Di Caro, L., & Schifanella, C. (2010). Emerging topic detection on twitter based on temporal and social terms evaluation. Tenth International Workshop on Multimedia Data Mining: MDMKDD ’10. https://doi.org/10.1145/1814245.1814249
  306. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.
  307. Tamburrini, N., Cinnirella, M., Jansen, V. A. A., & Bryden, J. (2015). Twitter users change word usage according to conversation-partner social identity. Social Networks, 40, 84–89. https://doi.org/10.1016/j.socnet.2014.07.004
  308. Tekumalla, R., & Banda, J. M. (2020). Social Media Mining Toolkit (SMMT). Genomics & Informatics, 18(2), e16. https://doi.org/10.5808/GI.2020.18.2.e16
  309. Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports, 9(1), 5233. https://doi.org/10.1038/s41598-019-41695-z
  310. Traag, V., Zanini, F., Gibson, R., Ben-Kiki, O., & van Kuppevelt, D. (2020). vtraag/leidenalg 0.8.2. Zenodo. https://doi.org/10.5281/zenodo.4047113
  311. Martin, S., Brown, W. M., Klavans, R., & Boyack, K. W. (2011). OpenOrd: an open-source toolbox for large graph layout. Visualization and Data Analysis 2011, 786806. https://doi.org/10.1117/12.871402
  312. Mcclurg, S. D. (2003). Social Networks and Political Participation: The Role of Social Interaction in Explaining Political Participation. Political Research Quarterly, 56(4), 449–464. https://doi.org/10.1177/106591290305600407
  313. Dugué, N., Labatut, V., & Perez, A. (2015). A community role approach to assess social capitalists visibility in the Twitter network. Social Network Analysis and Mining, 5(1), P10008. https://doi.org/10.1007/s13278-015-0266-0
  314. Labatut, V., & Balasque, J.-M. (2013). Informative Value of Individual and Relational Data Compared Through Business-Oriented Community Detection. In T. Özyer, J. Rokne, G. Wagner, & A. H. P. Reuser (Eds.), The Influence of Technology on Social Network Analysis and Mining (Vol. 6, pp. 303–330). Springer Vienna. https://doi.org/10.1007/978-3-7091-1346-2\textunderscore 13
  315. Leicht, E. A., & Newman, M. E. J. (2008). Community structure in directed networks. Physical Review Letters, 100(11), 118703. https://doi.org/10.1103/PhysRevLett.100.118703
  316. Lai, M., Patti, V., Ruffo, G., & Rosso, P. (2020). #Brexit: Leave or remain? the role of user’s community and diachronic evolution on stance detection. Journal of Intelligent & Fuzzy Systems, 39(2), 2341–2352. https://doi.org/10.3233/JIFS-179895
  317. Richter, Y., Yom-Tov, E., & Slonim, N. Predicting customer churn in mobile networks through analysis of social groups. Proceedings of the 2010 SIAM International Conference on Data Mining. http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.64
  318. Puschmann, C., & Peters, I. (op. 2017). Handbuch soziale Medien. Springer VS. https://doi.org/10.1007/978-3-658-03765-9\textunderscore 12
  319. Giulia Muzio, K. B., Leslie O’Bray. (2020). Biological network analysis with deep learning. Briefings in Bioinformatics, 1–17.
  320. Ryu, S., Lim, J., Hong, S. H., & Kim, W. Y. (2018). Deeply learning molecular structure-property relationships using attention-and gate-augmented graph convolutional network. ArXiv Preprint ArXiv:1805.10988.
  321. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.
  322. Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žı́dek Augustin, Nelson, A. W. R., Bridgland, A., & others. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706–710.
  323. Thomas Gaudelet, et al, Ben Daym Arian R. (2012). Utilising Graph Machine Learning within Drug Discovery and Development. https://arxiv.org/abs/2012.05716
  324. Hyeoncheol Cho, I. S. C. (2018). Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation. https://arxiv.org/abs/1806.02473
  325. You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2019). Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.
  326. Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., & Zhang, P. (2018). Interpretable Drug Target Prediction Using Deep Neural Representation. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 3371–3377.
  327. Park, C., Park, J., & Park, S. (2020). AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction. Expert Systems with Applications, 159, 113538.
  328. Lee, B. T., Kwon, O.-Y., Park, H., Cho, K.-J., Kwon, J.-M., & Lee, Y. (2020). Graph Convolutional Networks-Based Noisy Data Imputation in Electronic Health Record. Critical Care Medicine, 48(11), e1106—e1111. https://doi.org/10.1097/ccm.0000000000004583
  329. https://www.visual-computing.org/2016/01/18/group-structures-graphs/diss_cv01/
  330. https://www.c4xdiscovery.com/conformetrix/the-importance-of-drug-3d-shapes.html
  331. https://www.ebi.ac.uk/training-beta/online/courses/network-analysis-of-protein-interaction-data-an-introduction/network-analysis-in-biology/
  332. https://littlefoxdiary.tistory.com/16
  333. Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? Journal of Marketing Research 49 (2), 192–205. https://doi.org/10.1509/jmr.10.0353
  334. Srinivasan, B. V., Anandhavelu, N., Dalal, A., Yenugula, M., Srikanthan, P., & Layek, A. (2014). Topic-based targeted influence maximization. 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), 1–6. https://doi.org/10.1109/COMSNETS.2014.6734935
  335. de Veirman, M., de Jans, S., & van den Abeele, E. (2019). Influencer marketing. Teenagers as commercial content creators. Advertising Literacy. Dealing with Persuasive Messages in a Complex Media Environment, Abstracts. http://hdl.handle.net/1854/LU-8645400
  336. Sharma, T., Charls, A., & Singh, P. K. Community Mining in Signed Social Networks - An Automated Approach. 2009 International Conference on Computer Engineering and Applications, 2, 152–157. http://www.ipcsit.com/vol2/28-A217.pdf
  337. Chen, J., Liu, D., Hao, F., & Wang, H. (2020). Community detection in dynamic signed network: an intimacy evolutionary clustering algorithm. Journal of Ambient Intelligence and Humanized Computing, 11(2), 891–900. https://doi.org/10.1007/s12652-019-01215-3
  338. Traag, V. A., & Bruggeman, J. (2009). Community detection in networks with positive and negative links. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(3 Pt 2), 036115. https://doi.org/10.1103/PhysRevE.80.036115
  339. Che, S., Yang, W., & Wang, W. (2020). A Memetic Algorithm for Community Detection in Signed Networks. IEEE Access, 8, 123585–123602. https://doi.org/10.1109/ACCESS.2020.3006108
  340. Liu, C., Liu, J., & Jiang, Z. (2014). A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Transactions on Cybernetics, 44(12), 2274–2287. https://doi.org/10.1109/TCYB.2014.2305974
  341. Aref, S., & Wilson, M. C. (2019). Balance and frustration in signed networks. Journal of Complex Networks, 7(2), 163–189. https://doi.org/10.1093/comnet/cny015
  342. Aref, S., & Wilson, M. C. (2018). Measuring partial balance in signed networks. Journal of Complex Networks, 6(4), 566–595. https://doi.org/10.1093/comnet/cnx044
  343. Anchuri, P., & Ismail, M. M. (2012). Communities and Balance in Signed Networks: A Spectral Approach. Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), 235–242. https://doi.org/10.1109/ASONAM.2012.48
  344. Cartwright, D., & Harary, F. (1956). Structural balance: a generalization of Heider’s theory. Psychological Review, 63(5), 277–293. https://doi.org/10.1037/h0046049
  345. Chiang, H., Natarajan, T., & Dhillon. (2013). Prediction and Clustering in Signed Networks: A Local to Global Perspective. In Journal of Machine Learning Research.
  346. Doreian, P., & Mrvar, A. (1996). A Partitioning Approach to Structural Balance. Social Networks, 18(2), 149–168. http://www.sciencedirect.com/science/article/pii/0378873395002596
  347. Galimberti, E., Madeddu, C., Bonchi, F., & Ruffo, G. (2020). Visualizing Structural Balance in Signed Networks. In H. Cherifi, S. Gaito, J. F. Mendes, E. Moro, & L. M. Rocha (Eds.), Complex Networks and Their Applications VIII (Vol. 882, pp. 53–65). Springer International Publishing. https://doi.org/10.1007/978-3-030-36683-4\textunderscore 5
  348. Heider, F. (1946). Attitudes and cognitive organization. The Journal of Psychology, 21, 107–112. https://doi.org/10.1080/00223980.1946.9917275
  349. Kirkley, A., Cantwell, G. T., & Newman, M. E. J. (2019). Balance in signed networks. Physical Review. E, 99(1-1), 012320. https://doi.org/10.1103/PhysRevE.99.012320
  350. Tang, J., Chang, Y., Aggarwal, C. C., & Liu, huan. (2015). A Survey of Signed Network Mining in Social Media. CoRR, abs/1511.07569. http://arxiv.org/abs/1511.07569
  351. Zheng, X., Zeng, D., & Wang, F.-Y. (2015). Social balance in signed networks. Information Systems Frontiers, 17(5), 1077–1095. https://doi.org/10.1007/s10796-014-9483-8
  352. Stanford Large Network Dataset Collection. (27.06.2021). https://snap.stanford.edu/data/#signnets
  353. Newman, M. (2018). (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198805090.001.0001
  354. Yin, X., Hu, X., Chen, Y., Yuan, X., & Li, B. (2019). Signed-PageRank: An Efficient Influence Maximization Framework for Signed Social Networks. IEEE Transactions on Knowledge and Data Engineering, 1. https://doi.org/10.1109/TKDE.2019.2947421
  355. Backstrom, L., & Leskovec, J. (2011). Supervised random walks: predicting and recommending links in social networks. In I. King, W. Nejdl, & H. Li (Eds.), WSDM 2011 Hong Kong (pp. 635–644). ACM.
  356. Jung, J., Jin, W., & Kang, U. (2020). Random walk-based ranking in signed social networks: model and algorithms. Knowledge and Information Systems, 62(2), 571–610. https://doi.org/10.1007/s10115-019-01364-z
  357. Tasgin, M., Herdagdelen, A., & Bingol, H. (2007). Community Detection in Complex Networks Using Genetic Algorithms. http://arxiv.org/pdf/0711.0491v1
  358. Shi, C., Yan, Z., Cai, Y., & Wu, B. (2012). Multi-objective community detection in complex networks. Applied Soft Computing, 12(2), 850–859. https://doi.org/10.1016/j.asoc.2011.10.005
  359. Huang, J., Sun, H., Liu, Y., Song, Q., & Weninger, T. (2011). Towards online multiresolution community detection in large-scale networks. PloS One, 6(8), e23829. https://doi.org/10.1371/journal.pone.0023829
  360. Easley, D., & Kleinberg, J. M. (2010). Networks, Crowds, and Markets - Reasoning About a Highly Connected World. Cambridge.
  361. Tang, J., Lou, T., & Kleinberg, J. (2012). Inferring social ties across heterogenous networks. In E. Adar (Ed.), Proceedings of the fifth ACM international conference on Web search and data mining (p. 743). ACM. https://doi.org/10.1145/2124295.2124382
  362. Bhatia, M. P. S., & Gaur, P. (102008). Statistical approach for community mining in social networks. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, 207–211. https://doi.org/10.1109/SOLI.2008.4686392
  363. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2007, cop. 2001). Introduction to algorithms (2nd. ed., 10th printing). MIT Press and McGraw-Hill.
  364. HIX, S. I. M. O. N., & NOURY, A. B. D. U. L. (2009). After Enlargement: Voting Patterns in the Sixth European Parliament. Legislative Studies Quarterly, 34(2), 159–174. https://doi.org/10.3162/036298009788314282
  365. Reid, F., McDaid, A., & Hurley, N. (2013). Partitioning Breaks Communities. In T. Özyer, Z. Erdem, J. Rokne, & S. Khoury (Eds.), Mining Social Networks and Security Informatics (pp. 79–105). Springer Netherlands. https://doi.org/10.1007/978-94-007-6359-3\textunderscore 5
  366. Wright, W. E. (1977). Gravitational clustering. Pattern Recognition, 9(3), 151–166. https://doi.org/10.1016/0031-3203(77)90013-9
  367. Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 113, 25–40. https://doi.org/10.1016/j.future.2020.06.030
  368. Gupta, M. M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy Sets and Systems, 40(3), 431–450. https://doi.org/10.1016/0165-0114(91)90171-L
  369. Robin De Baets. (2020). Gravitational Clustering Visualization. https://www.youtube.com/watch?v=0SHRdmkzgJM
  370. European Parliament. (2021). Results of votes. https://www.europarl.europa.eu/plenary/en/votes.html?tab=votes
  371. Kim, H., & Kang, H. (2020). Graph Neural Network in Biologie (3rd ed.). http://ocd.git.dbis.rwth-aachen.de/Online-Buch/Auflage_3/GNN//index.html
  372. Schliewe, D., & Gries, F. (2020). Politische und Ökonomische Netzwerke (3rd ed.). http://ocd.git.dbis.rwth-aachen.de/Online-Buch/Auflage_3/PON/index.html
  373. Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detection in networks. ACM Computing Surveys, 45(4), 1–35. https://doi.org/10.1145/2501654.2501657
  374. Shahriari, M., & Klamma, R. (8252015). Signed Social Networks. In J. Pei, F. Silvestri, & J. Tang (Eds.), Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 (pp. 1608–1609). ACM. https://doi.org/10.1145/2808797.2809357
  375. Cherepnalkoski, D., Karpf, A., Mozetič, I., & Grčar, M. (2016). Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities. PloS One, 11(11), e0166586. https://doi.org/10.1371/journal.pone.0166586
  376. E. Goldberg, R. L. (1985). Alleles, loci, and the traveling salesman problem. In Proceedings of the first International Conference Genetic Algorithms (pp. 154–159).
  377. Zhang, Q., & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731. https://doi.org/10.1109/TEVC.2007.892759
  378. Gómez, S., Jensen, P., & Arenas, A. (2009). Analysis of community structure in networks of correlated data. Physical Review, 80(1), 016114+. https://doi.org/10.1103/physreve.80.016114
  379. Wu, J., Zhang, L., Li, Y., & Jiao, Y. (2016). Partition signed social networks via clustering dynamics. Physica A: Statistical Mechanics and Its Applications, 443, 568–582. https://doi.org/10.1016/j.physa.2015.09.066
  380. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
  381. Chen, J., Wang, H., Wang, L., & Liu, W. (2016). A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets. Physica A: Statistical Mechanics and Its Applications, 447, 482–492. https://doi.org/10.1016/j.physa.2015.12.006
  382. Shao, J., Han, Z., Yang, Q., & Zhou, T. (2015). Community Detection based on Distance Dynamics. In L. Cao, C. Zhang, T. Joachims, G. Webb, D. D. Margineantu, & G. Williams (Eds.), Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: KDD’15 (pp. 1075–1084). https://doi.org/10.1145/2783258.2783301
  383. Xiaoming Li, J. Z., Hui Fang. (2018). FILE: A Novel Framework forPredicting Social Status in Signed Networks. The Thirty-Second AAAI Conferenceon Artificial Intelligence (AAAI-18).
  384. Saeed Reza Shahriary, R. M. D. N., Mohsen Shahriari. (2015). A Community-Based Approach for Link Prediction in Signed Social Networks. Scientific ProgrammingVolume 2015, 1–10.
  385. Sign prediction in social networks based on users reputation and optimism. (2016). Soc. Netw. Anal. Min. .
  386. Moshen Shahriary, M. J. (2014). Ranking Nodes in Signed Social Networks. Social Network Analysis and Mining, 4.
  387. A survey of signed network mining in social media. (2016). ACM Computing Surveys.
  388. X. Li, J. Z., H. Fang. (2017). Rethinking the link prediction problem in signed social networks. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
  389. D. Song, A. D. M. (2015). Recommending positive linksin signed social networks by optimizing a generalized auc. Proceedings of the Twenty-Ninth AAAI Conference on ArtificialIntelligence.
  390. C. Hsieh, I. D., K.-Y. Chiang. (2012). Low rank modeling of signed networks. Proceedings of the 18th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining,
  391. Mirjam Wattenhofer Roger Wattenhofer Zack Zhu. (2012). The YouTube Social Network (Sixth International AAAI Conference on Weblogs and Social Media, Ed.). https://research.google/pubs/pub37738/
  392. Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon, Ambuj Tewari. (2014). Prediction and Clustering in Signed Networks:A Local to Global Perspective. Journal of Machine Learning Research 15 (2014) 1177-12. https://www.jmlr.org/papers/volume15/chiang14a/chiang14a.pdf
  393. Shahriari, M., & Jalili, M. (2014). Ranking Nodes in Signed Social Networks. Social Network Analysis and Mining (SNAM), 4. https://doi.org/10.1007/s13278-014-0172-x
  394. Shahriari, M., Li, Y., & Klamma, R. (2017). The Significant Effect of Overlapping Community Structures in Signed Social Networks. In J. Kawash, N. Agarwal, & T. Özyer (Eds.), Prediction and Inference from Social Networks and Social Media (pp. 51–84). Springer International Publishing. https://doi.org/10.1007/978-3-319-51049-1\textunderscore 3
  395. Shahriari, M., Sichani, O. A., Gharibshah, J., & Jalili, M. (2016). Sign prediction in social networks based on users reputation and optimism. Social Network Analysis and Mining, 6(1), 91. https://doi.org/10.1007/s13278-016-0401-6
  396. Fagnan, J., Abnar, A., Rabbany, R., & Zaïane, O. R. (2018). Modular Networks for Validating Community Detection Algorithms. ArXiv e-Prints.
  397. Hric, D., Darst, R. K., & Fortunato, S. (2014). Community detection in networks: Structural communities versus ground truth. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 90(6), 062805. https://doi.org/10.1103/PhysRevE.90.062805
  398. Hu, Y., Yang, B., & Wong, H.-S. (2016). A weighted local view method based on observation over ground truth for community detection. Information Sciences, 355-356, 37–57. https://doi.org/10.1016/j.ins.2016.03.028
  399. Jebabli, M., Cherifi, H., Cherifi, C., & Hamouda, A. Overlapping Community Detection Versus Ground-Truth in AMAZON Co-Purchasing Network. 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 328–336. https://doi.org/10.1109/SITIS.2015.47
  400. Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detection in networks. ACM Computing Surveys (CSUR), 45(4). https://doi.org/10.1145/2501654.2501657
  401. Yang, J., & Leskovec, J. (2012). Defining and Evaluating Network Communities based on Ground-truth. In Y. Ding (Ed.), Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics: Vol. abs/1205.6233 (pp. 1–8). ACM. https://doi.org/10.1145/2350190.2350193
  402. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. Measurement and analysis of online social networks (p. 29). https://doi.org/10.1145/1298306.1298311
  403. McAuley, J., & Leskovec, J. (2012). Learning to Discover Social Circles in Ego Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (NIPS 2012) (pp. 548–556).
  404. Nerurkar, P., Chandane, M., & Bhirud, S. (2019). A Comparative Analysis of Community Detection Algorithms on Social Networks. In N. K. Verma & A. K. Ghosh (Eds.), Computational Intelligence: Theories, Applications and Future Directions - Volume I (Vol. 798, pp. 287–298). Springer Singapore. https://doi.org/10.1007/978-981-13-1132-1\textunderscore 23
  405. Berger-Wolf, T. Y. (2007). A Framework For Community Identification in Dynamic Social Networks. 717–726.
  406. Karyotis, V., Tsitseklis, K., Sotiropoulos, K., & Papavassiliou, S. (2018). Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications. Sensors (Basel, Switzerland), 18(4), 1205. https://doi.org/10.3390/s18041205
  407. Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. (2008). Statistical properties of community structure in large social and information networks. Proceedings of 17th International Conference on World Wide Web, 695. https://doi.org/10.1145/1367497.1367591
  408. Nguyen, N. P., Dinh, T. N., Yilin Shen, & Thai, M. T. (2014). Dynamic Social Community Detection and Its Applications. PLOS ONE, 9(4), e91431. https://doi.org/10.1371/journal.pone.0091431
  409. Wu, Z., Chen, J., & Zhang, Y. (17.12.2018 - 20.12.2018). An Incremental Community Detection Method in Social Big Data. 2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT), 136–141. https://doi.org/10.1109/BDCAT.2018.00024
  410. Li, Y., Xia, H., Zhang, R., Hu, B., & Cheng, X. (2020). A Novel Community Detection Algorithm Based on Paring, Splitting and Aggregating in Internet of Things. IEEE Access, 8, 123938–123951. https://doi.org/10.1109/ACCESS.2020.3006029
  411. Xu, X., Hu, N., Trovati, M., Ray, J., Palmieri, F., & Pandey, H. M. (2020). DLCD-CCE: A Local Community Detection Algorithm for Complex IoT Networks. IEEE Internet of Things Journal, 7(5), 4607–4615. https://doi.org/10.1109/JIOT.2019.2960743
  412. Orman, G. K., Labatut, V., & Cherifi, H. (2013). Towards realistic artificial benchmark for community detection algorithms evaluation. International Journal of Web Based Communities, 9(3), 349. https://doi.org/10.1504/IJWBC.2013.054908
  413. Slota, G. M., & Garbus, J. (2020). A Parallel LFR-like Benchmark for Evaluating Community Detection Algorithms. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 1112–1115. https://doi.org/10.1109/IPDPSW50202.2020.00183
  414. Ceri, S., Bozzon, A., Brambila, M., Della Valle, E., Fraternati, P., & Quarteroni, S. (2013). Web information retrieval: Data-centric systems and applications.
  415. Itoh, T., & Klein, K. (2015). Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization. IEEE Computer Graphics and Applications, 35(6), 30–40. https://doi.org/10.1109/MCG.2015.115
  416. Shen, X., & Chung, F.-L. (2020). Deep Network Embedding for Graph Representation Learning in Signed Networks. IEEE Transactions on Cybernetics, 50(4), 1556–1568. https://doi.org/10.1109/TCYB.2018.2871503
  417. Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., & Wallace, A. (2010). Finding Overlapping Communities in Social Networks (2010 IEEE Second International Conference on Social Computing, Ed.).
  418. Kar, A., Prakash, A., Liu, M.-Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba, A., & Fidler, S. (o. J.). Meta-Sim: Learning to Generate Synthetic Datasets.
  419. Huang, X., Chen, D., Ren, T., & Wang, D. (2021). A survey of community detection methods in multilayer networks. Data Mining and Knowledge Discovery, 35(1), 1–45. https://doi.org/10.1007/s10618-020-00716-6
  420. Huang, L., Wang, C.-D., & Chao, H.-Y. (2021). HM-Modularity: A Harmonic Motif Modularity Approach for Multi-Layer Network Community Detection. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2520–2533. https://doi.org/10.1109/TKDE.2019.2956532
  421. Chen, Y., Wang, X. L., Yuan, B., & Tang, B. Z. (2014). Overlapping community detection in networks with positive and negative links. Journal of Statistical Mechanics: Theory and Experiment, 2014(3), P03021. http://stacks.iop.org/1742-5468/2014/i=3/a=P03021
  422. Esmailian, P., & Jalili, M. (2015). Community Detection in Signed Networks: the Role of Negative ties in Different Scales. SCIENTIFIC REPORTS, 5, 14339. https://doi.org/10.1038/srep14339
  423. Javari, A., & Jalili, M. (2014). Cluster-Based Collaborative Filtering for Sign Prediction in Social Networks with Positive and Negative Links. ACM Transactions on Intelligent Systems and Technology, 5(2), 24:1–24:19. https://doi.org/10.1145/2501977
  424. Cai HongYun, Zheng Vincent W., & Chang Kevin Chen-Chuan. (2018). A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1616–1637. https://doi.org/10.1109/TKDE.2018.2807452
  425. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques / Jiawei Han, Micheline Kamber, Jian Pei (3rd ed.). Morgan Kaufmann and Oxford : Elsevier Science.
  426. Wu, L., Zhang, Q., Chen, C.-H., Guo, K., & Wang, D. (2020). Deep Learning Techniques for Community Detection in Social Networks. IEEE Access, 8, 96016–96026. https://doi.org/10.1109/ACCESS.2020.2996001
  427. Kumar, Srijan and Spezzano, Francesca and Subrahmanian, VS and Faloutsos, Christos. Edge weight prediction in weighted signed networks. In Data Mining ICDM 2016 (pp. 221–230).
  428. Ryan A. Rossi and Nesreen K. Ahmed. The Nework Data Repository with Interactive Graph Analytics and Visualization. In AAAI 2015. https://networkrepository.com
  429. Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764. https://doi.org/10.1038/nature09182
  430. Bhowmick, A. K., Meneni, K., Danisch, M., Guillaume, J.-L., & Mitra, B. (2020). LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding. In WSDM ’20: Proceedings of the 13th International Conference on Web Search and Data Mining (pp. 43–51). https://doi.org/10.1145/3336191.3371800
  431. Gleich, D. F., & Kloster, K. (2016). Seeded PageRank solution paths. European Journal of Applied Mathematics, 27(6), 812–845. https://doi.org/10.1017/S0956792516000280
  432. Ke, L., Zhang, Q., & Battiti, R. (2013). MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and AntColony. IEEE Transactions on Cybernetics, 43(6), 1845–1859. https://doi.org/10.1109/TSMCB.2012.2231860
  433. Li, H.-J., Zhang, J., Liu, Z.-P., Chen, L., & Zhang, X.-S. (2012). Identifying overlapping communities in social networks using multi-scale local information expansion. The European Physical Journal B, 85(6). https://doi.org/10.1140/epjb/e2012-30015-5
  434. Nguyen, N. P., Dinh, T. N., Thai, M. T., & Nguyen, D. T. (2011). Overlapping Community Structures and Their Detection on Social Networks. 2011 IEEE Third International Conference on Social Computing (SocialCom), 35–40. https://doi.org/10.1109/PASSAT/SocialCom.2011.16
  435. Nguyen, T. D., & Tirthapura, S. (Eds.). (2018). V2V: Vector Embedding of a Graph and Applications. https://doi.org/10.1109/IPDPSW.2018.00182
  436. Rossi, R. A., Di Jin, Kim, S., Ahmed, N. K., Koutra, D., & Lee, J. B. (2019). From Community to Role-based Graph Embeddings. https://doi.org/10.1145/3397191
  437. Shi, Chuan and Cai, Yanan and Di Fu and Dong, Yuxiao and Wu, Bin. (2013). A link clustering based overlapping community detection algorithm. Data & Knowledge Engineering, 87, 394–404. https://doi.org/10.1016/j.datak.2013.05.004
  438. Stanoev, A., Smilkov, D., & Kocarev, L. (2011). Identifying communities by influence dynamics in social networks. Physical Review, 84(4). https://doi.org/10.1103/PhysRevE.84.046102
  439. Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T.-Y. (Eds.). (2014). Learning Deep Representations for Graph Clustering. AAAI Press.
  440. Whang, J. J., Gleich, D. F., & Dhillon, I. S. (2016). Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion. IEEE Transactions on Knowledge and Data Engineering, 28(5), 1272–1284. https://doi.org/10.1109/TKDE.2016.2518687
  441. Zhang, S., Wang, R.-S., & Zhang, X.-S. (2007). Identification of overlapping community structure in complex networks using fuzzy -means clustering. Physica A: Statistical Mechanics and Its Applications, 374(1), 483–490. https://doi.org/10.1016/j.physa.2006.07.023
  442. Zhang, X., Wang, C., Su, Y., Pan, L., & Zhang, H.-F. (2017). A Fast Overlapping Community Detection Algorithm Based on Weak Cliques for Large-Scale Networks. IEEE Transactions on Computational Social Systems, 4(4), 218–230. https://doi.org/10.1109/TCSS.2017.2749282
  443. Zhu, Y., Li, D., Xu, W., Wu, W., Fan, L., & Willson, J. (2014). Mutual-Relationship-Based Community Partitioning for Social Networks. IEEE Transactions on Emerging Topics in Computing, 2(4), 436–447. https://doi.org/10.1109/TETC.2014.2380391
  444. Shahriari, M., Krott, S., & Klamma, R. (2015). Disassortative Degree Mixing and Information Diffusion for Overlapping Community Detection in Social Networks (DMID). In A. Gangemi, S. Leonardi, & A. Panconesi (Eds.), Proceedings of the 24th International Conference on World Wide Web Companion (pp. 1369–1374). International World Wide Web Conferences Steering Committee.
  445. Cai, Q., Gong, M., Shen, B., Ma, L., & Jiao, L. (2014). Discrete particle swarm optimization for identifying community structures in signed social networks. Neural Networks : the Official Journal of the International Neural Network Society, 58, 4–13. https://doi.org/10.1016/j.neunet.2014.04.006
  446. Interdonato, R., Magnani, M., Perna, D., Tagarelli, A., & Vega, D. (2020). Multilayer network simplification: approaches, models and methods. Computer Science Review, 36, 100246.
  447. Bankevich, A., Bzikadze, A. V., Kolmogorov, M., Antipov, D., & Pevzner, P. A. (2022). Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nature Biotechnology, 1–7.
  448. Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. ArXiv Preprint ArXiv:1709.05584.
  449. Lin, X., Sun, W., Veeraraghavan, M., & Hu, W. (2016). Time-shifted multilayer graph: A routing framework for bulk data transfer in optical circuit-switched networks with assistive storage. Journal of Optical Communications and Networking, 8(3), 162–174.
  450. Liu, B., Zhang, F., Zhang, C., Zhang, W., & Lin, X. (2020). Corecube: Core decomposition in multilayer graphs. International Conference on Web Information Systems Engineering, 694–710.
  451. Mondal, S., Basu, A., & Mukherjee, N. (2020). Building a trust-based doctor recommendation system on top of multilayer graph database. Journal of Biomedical Informatics, 110, 103549.
  452. Santra, A., Bhowmick, S., & Chakravarthy, S. (2017). Efficient community re-creation in multilayer networks using boolean operations. Procedia Computer Science, 108, 58–67.
  453. Vu, X.-S., Santra, A., Chakravarthy, S., & Jiang, L. (2019). Generic multilayer network data analysis with the fusion of content and structure. ArXiv Preprint ArXiv:1905.08635.
  454. Warnke, J., & Ali, H. (2014). Focus: a new multilayer graph model for short read analysis and extraction of biologically relevant features. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, 489–498.
  455. Teng, X., Liu, J., & Li, L. (2021). A synchronous feature learning method for multiplex network embedding. Information Sciences, 574, 176–191.
  456. Navlakha, S., Rastogi, R., & Shrivastava, N. (2008). Graph summarization with bounded error. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 419–432.
  457. Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.
  458. Huang, X., Chen, D., Ren, T., & Wang, D. (2020). A survey of community detection methods in multilayer networks. Data Mining and Knowledge Discovery, 35(1), 1–45. https://doi.org/10.1007/s10618-020-00716-6
  459. Chen, D., Du, P., Jiang, Q., Huang, X., & Wang, D. (2020). A feasible community detection algorithm for multilayer networks. Symmetry, 12(2), 223.
  460. Berlingerio, M., Coscia, M., & Giannotti, F. (2011). Finding and characterizing communities in multidimensional networks. 2011 International Conference on Advances in Social Networks Analysis and Mining, 490–494.
  461. Kazienko, P., Musial, K., Kukla, E., Kajdanowicz, T., & Bródka, P. (2011). Multidimensional social network: model and analysis. International Conference on Computational Collective Intelligence, 378–387.
  462. Rossetti, G., Berlingerio, M., & Giannotti, F. (2011). Scalable link prediction on multidimensional networks. 2011 IEEE 11th International Conference on Data Mining Workshops, 979–986.
  463. Berlingerio, M., Coscia, M., & Giannotti, F. (2011). Finding redundant and complementary communities in multidimensional networks. Proceedings of the 20th ACM International Conference on Information and Knowledge Management, 2182–2184.
  464. mucha, P., Richardson, T., Macon, K., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876–878.
  465. Berlingerio, M., Pinelli, F., & Calabrese, F. (2013). Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Mining and Knowledge Discovery, 27(3), 294–320.
  466. Interdonato, R., Magnani, M., Perna, D., Tagarelli, A., & Vega, D. (2020). Multilayer network simplification: approaches, models and methods. Computer Science Review, 36, 100246.
  467. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.
  468. Taylor, D., Shai, S., Stanley, N., & Mucha, P. J. (2016). Enhanced detectability of community structure in multilayer networks through layer aggregation. Physical Review Letters, 116(22), 228301.
  469. Zhu, G., & Li, K. (2014). A unified model for community detection of multiplex networks. International Conference on Web Information Systems Engineering, 31–46.
  470. Le Merrer, E., & Trédan, G. (2009). Centralities: capturing the fuzzy notion of importance in social graphs. Proceedings of the Second ACM EuroSys Workshop on Social Network Systems, 33–38.
  471. Symeonidis, P., Tiakas, E., & Manolopoulos, Y. (2010). Transitive node similarity for link prediction in social networks with positive and negative links. Proceedings of the Fourth ACM Conference on Recommender Systems, 183–190.
  472. De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X, 5(1), 011027.
  473. Bródka, P., Filipowski, T., & Kazienko, P. (2011). An introduction to community detection in multi-layered social network. World Summit on Knowledge Society, 185–190.
  474. Chunaev, P., Nuzhdenko, I., & Bochenina, K. (2019). Community detection in attributed social networks: a unified weight-based model and its regimes. 2019 International Conference on Data Mining Workshops (ICDMW), 455–464.
  475. Dang, T. A., & Viennet, E. (2012). Community detection based on structural and attribute similarities. International Conference on Digital Society (Icds), 659, 7–12.
  476. Interdonato, R., Magnani, M., Perna, D., Tagarelli, A., & Vega, D. (2020). Multilayer network simplification: approaches, models and methods. Computer Science Review, 36, 100246.
  477. Afsarmanesh, N., & Magnani, M. (2016). Finding overlapping communities in multiplex networks. ArXiv Preprint ArXiv:1602.03746.
  478. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2013). Multidimensional networks: foundations of structural analysis. World Wide Web, 16(5), 567–593.
  479. Pei, J., Han, J., & Mao, R. (2000). CLOSET: An efficient algorithm for mining frequent closed itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 4(2), 21–30.
  480. Multilayer networks: aspects, implementations, and application in biomedicine. (2020). Big Data Analytics, 5(1).
  481. Abdolhosseini-Qomi, A. M., Jafari, S. H., Taghizadeh, A., Yazdani, N., Asadpour, M., & Rahgozar, M. (2020). Link prediction in real-world multiplex networks via layer reconstruction method. Royal Society Open Science, 7(7), 191928.
  482. Battiston, F., Nicosia, V., & Latora, V. (2014). Structural measures for multiplex networks. Physical Review E, 89(3), 032804.
  483. Malek, M., Zorzan, S., & Ghoniem, M. (2020). A methodology for multilayer networks analysis in the context of open and private data: biological application. Applied Network Science, 5(1), 1–28.
  484. Br’odka, P., Kazienko, P., Musiał, K., & Skibicki, K. (2012). Analysis of neighbourhoods in multi-layered dynamic social networks. International Journal of Computational Intelligence Systems, 5(3), 582–596.
  485. Lv, Y., Huang, S., Zhang, T., & Gao, B. (2021). Application of Multilayer Network Models in Bioinformatics. Frontiers in Genetics, 12, 380.
  486. Noldus, R., & Van Mieghem, P. (2015). Assortativity in complex networks. Journal of Complex Networks, 3(4), 507–542.
  487. Min, B., Do Yi, S., Lee, K.-M., & Goh, K.-I. (2014). Network robustness of multiplex networks with interlayer degree correlations. Physical Review E, 89(4), 042811.
  488. Marvel, S. A., Strogatz, S. H., & Kleinberg, J. M. (2009). Energy landscape of social balance. Physical Review Letters, 103(19), 198701.
  489. Solá, L., Romance, M., Criado, R., Flores, J., Garcı́a del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131.
  490. Sole-Ribalta, A., De Domenico, M., Kouvaris, N. E., Diaz-Guilera, A., Gomez, S., & Arenas, A. (2013). Spectral properties of the Laplacian of multiplex networks. Physical Review E, 88(3), 032807.
  491. Huang, L., Wang, C.-D., & Chao, H.-Y. (2019). HM-Modularity: A harmonic motif modularity approach for multi-layer network community detection. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2520–2533.
  492. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.
  493. Bianconi, G. (2013). Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E, 87(6), 062806.
  494. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., & Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Phys. Rev. X, 3(4), 041022.
  495. Malliaros, F. D., & Vazirgiannis, M. (2013). To stay or not to stay: modeling engagement dynamics in social graphs. Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, 469–478.
  496. Kossinets, G. (2006). Effects of missing data in social networks. Social Networks, 28(3), 247–268.
  497. Laumann, E. O., Marsden, P. V., & Prensky, D. (1989). The boundary specification problem in network analysis. Research Methods in Social Network Analysis, 61(8).
  498. Wang, L., Li, S., Wang, W., Yang, W., & Wang, H. (2021). A bank liquidity multilayer network based on media emotion. The European Physical Journal B, 94(2), 1–23.
  499. Wasserman, S., Faust, K., & others. (1994). Social network analysis: Methods and applications.
  500. Lazega, E., & others. (2001). The collegial phenomenon: The social mechanisms of cooperation among peers in a corporate law partnership. Oxford University Press on Demand.
  501. Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodology, 36(1), 99–153.
  502. Ren, Y., Sarkar, A., Ay, A., Dobra, A., & Kahveci, T. (2019). Finding conserved patterns in multilayer networks. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 97–102.
  503. Galimberti, E., Bonchi, F., Gullo, F., & Lanciano, T. (2020). Core decomposition in multilayer networks: Theory, algorithms, and applications. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(1), 1–40.
  504. Bianconi, G. (2018). Multilayer networks: Structure and function (First edition). Oxford University Press.
  505. JEUB, L. U. C. A. S. G. S., MAHONEY, M. I. C. H. A. E. L. W., MUCHA, P. E. T. E. R. J., & PORTER, M. A. S. O. N. A. (2017). A local perspective on community structure in multilayer networks. Network Science, 5(2), 144–163. https://doi.org/10.1017/nws.2016.22
  506. Jerrum, M., & Sinclair, A. (1988). Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing - STOC ’88. https://doi.org/10.1145/62212.62234
  507. Campigotto, R., Céspedes, P. C., & Guillaume, J.-L. (2014). A Generalized and Adaptive Method for Community Detection. arXiv. https://doi.org/10.48550/ARXIV.1406.2518
  508. Liu, W., Suzumura, T., Ji, H., & Hu, G. (2018). Finding overlapping communities in multilayer networks. PLOS ONE, 13(4), e0188747. https://doi.org/10.1371/journal.pone.0188747
  509. Amelio, A., & Pizzuti, C. (2014). A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks. Parallel Problem Solving from Nature – PPSN XIII, 222–232. https://doi.org/10.1007/978-3-319-10762-2_22
  510. Xu, M. (2021). Understanding graph embedding methods and their applications. SIAM Review, 63(4), 825–853.
  511. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864.
  512. Liu, W., Chen, P.-Y., Yeung, S., Suzumura, T., & Chen, L. (2017). Principled multilayer network embedding. 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 134–141.
  513. Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  514. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). https://doi.org/10.1103/physreve.69.026113
  515. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008
  516. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science, 328(5980), 876–878. https://doi.org/10.1126/science.1184819
  517. Min, B., Do Yi, S., Lee, K.-M., & Goh, K.-I. (2014). Network robustness of multiplex networks with interlayer degree correlations. Physical Review E, 89(4), 042811.
  518. Multilayer networks: aspects, implementations, and application in biomedicine. (2020). Big Data Analytics, 5(2). https://doi.org/10.1186/s41044-020-00046-0
  519. Manlio De Domenico, A. A., Mason A. Porter. (2015). MuxViz: a tool for multilayer analysis and visualization of networks. Journal of Complex Networks, 3(2), 159–176. https://doi.org/10.1093/comnet/cnu038
  520. Multilayer networks. (2014). Journal of Complex Networks, 2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  521. Thomas M. J. Fruchterman, E. M. R. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1002/spe.4380211102
  522. Neef, D. (2009). Automatisches Layout für Produktfunktionsdarstellung im CAD-Umfeld [Master's thesis]. Hochschule Mittweida.
  523. The State of the Art in Multilayer Network Visualization. (2019). Computer Graphics Forum, 38(6), 125–149. https://doi.org/10.1111/cgf.13610
  524. Maccioni, A., & Abadi, D. J. (2016). Scalable pattern matching over compressed graphs via dedensification. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1755–1764.
  525. Tian, Y., Hankins, R. A., & Patel, J. M. (2008). Efficient aggregation for graph summarization. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 567–580.
  526. Amini, M. H., Imteaj, A., & Pardalos, P. M. (2020). Interdependent Networks: A Data Science Perspective. Patterns (New York, N.Y.), 1(1), 100003. https://doi.org/10.1016/j.patter.2020.100003
  527. Bondy, J. A., & Murty, U. S. R. (1977). Graph theory with applications (Paperback ed. [...] with corr. and some rev). Macmillan.
  528. Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3, 1344. https://doi.org/10.1038/srep01344
  529. Hammoud, Z., & Kramer, F. (2020). Multilayer networks: aspects, implementations, and application in biomedicine. Big Data Analytics, 5(1). https://doi.org/10.1186/s41044-020-00046-0
  530. Kong, Simonovic, & Zhang. (2019). Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies. Sustainability, 11(23), 6552. https://doi.org/10.3390/su11236552
  531. Marcello Tomasini. (2015). An Introduction to Multilayer Networks. 3966. https://doi.org/10.13140/RG.2.2.16830.18243
  532. Porter, M. A. (2018). What Is... a Multilayer Network? Notices of the American Mathematical Society, 65(11), 1. https://doi.org/10.1090/noti1746
  533. Wang, J., Jiang, C., & Qian, J. (2014). Robustness of interdependent networks with different link patterns against cascading failures. Physica A: Statistical Mechanics and Its Applications, 393, 535–541. https://doi.org/10.1016/j.physa.2013.08.031
  534. Castet, J.-F., & Saleh, J. H. (2013). Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks. PLOS ONE, 8(4), e60402. https://doi.org/10.1371/journal.pone.0060402
  535. Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  536. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696.
  537. Wang, G., & Li, H. (2009). Color degree and alternating cycles in edge-colored graphs. Discrete Mathematics, 309(13), 4349–4354. https://doi.org/10.1016/j.disc.2009.01.016
  538. Tagarelli, A., Amelio, A., & Gullo, F. (2017). Ensemble-based community detection in multilayer networks. Data Mining and Knowledge Discovery, 31(5), 1506–1543.
  539. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., & Arenas, A. (2013). Mathematical formulation of multilayer networks. Physical Review X, 3(4), 041022.
  540. Shenhao, A., & Ronghuan, Y. (2021). Multi-Layer Network Visualization Based on Force-Directed Algorithm. 2021 2nd International Conference on Artificial Intelligence and Information Systems. https://doi.org/10.1145/3469213.3470410
  541. Odri, S. V., Petrovacki, D. P., & Krstonosic, G. A. (1993). Evolutional development of a multilevel neural network. NEURAL NETWORKS, 6(4), 583–595. https://doi.org/10.1016/S0893-6080(05)80061-9
  542. Zhao, J., & Lei, X. (2019). Detecting overlapping protein complexes in weighted PPI network based on overlay network chain in quotient space. BMC Bioinformatics, 20(Suppl 25), 682. https://doi.org/10.1186/s12859-019-3256-9
  543. Kamada, T., Kawai, S., & others. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.
  544. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2011). The pursuit of hubbiness: analysis of hubs in large multidimensional networks. Journal of Computational Science, 2(3), 223–237.
  545. Foundations of Multidimensional Network Analysis. (2011). Proceedings - 2011 International Conference on Advances in Social Networks Analysis, 485. https://doi.org/10.1109/ASONAM.2011.103
  546. Kinsley AC, S. M. J., Rossi G, & K, V. W. (2020). Multilayer and Multiplex Networks: An Introduction to Their Use in Veterinary Epidemiology. https://doi.org/10.3389/fvets.2020.00596
  547. Abbe, E. (2018). Community Detection and Stochastic Block Models: Recent Developments. Journal of Machine Learning Research, 18(177), 1–86. http://jmlr.org/papers/v18/16-480.html
  548. Lee, W., Clement, & J., D. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science, 4(122). https://doi.org/10.1007/s41109-019-0232-2
  549. Huang, Y., Panahi, A., Krim, H., & Dai, L. (2020). Community Detection and Improved Detectability in Multiplex Networks. IEEE Transactions on Network Science and Engineering, 7(3), 1697–1709. https://doi.org/10.1109/tnse.2019.2949036
  550. A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning. IEEE Transactions on Knowledge and Data Engineering (IEEE Transactions on Knowledge and Data Engineering). https://doi.org/10.1109/TKDE.2021.3104155
  551. Lü, L., Pan, L., Zhou, T., Zhang, Y.-C., & Stanley, H. E. (2015). Toward link predictability of complex networks. Proceedings of the National Academy of Sciences, 112(8), 2325–2330.
  552. Bonchi, F., Gionis, A., Gullo, F., Tsourakakis, C. E., & Ukkonen, A. (2015). Chromatic correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(4), 1–24.
  553. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2011). Foundations of Multidimensional Network Analysis. 2011 International Conference on Advances in Social Networks Analysis and Mining, 485–489. https://doi.org/10.1109/ASONAM.2011.103
  554. Davis, D., Lichtenwalter, R., & Chawla, N. V. (2011). Multi-relational link prediction in heterogeneous information networks. 2011 International Conference on Advances in Social Networks Analysis and Mining, 281–288.
  555. Wasserman, S., Faust, K., & others. (1994). Social network analysis: Methods and applications.
  556. Buccafurri, F., Foti, V. D., Lax, G., Nocera, A., & Ursino, D. (2013). Bridge analysis in a social internetworking scenario. Information Sciences, 224, 1–18.
  557. Niggemann, O., & Stein, B. (2000). Meta heuristic for graph drawing. Learning the optimal graph-drawing method for clustered graphs. 286–289. https://doi.org/10.1145/345513.345354
  558. de León, A. de la V., & Bajorath, J. (2016). Design of chemical space networks incorporating compound distance relationships. F1000Research, 5.
  559. Adamic, L. A., & Glance, N. (2005). The Political Blogosphere and the 2004 U.S. Election: Divided They Blog. Proceedings of the 3rd International Workshop on Link Discovery, 36–43. https://doi.org/10.1145/1134271.1134277
  560. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461.
  561. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.
  562. Mcgee, F., Ghoniem, M., Melançon, G., Otjacques, B., & Pinaud, B. (2019). The state of the art in multilayer network visualization. Computer Graphics Forum, 38(6), 125–149.
  563. Bothorel, G., Serrurier, M., & Hurter, C. (2013). Visualization of frequent itemsets with nested circular layout and bundling algorithm. International Symposium on Visual Computing, 396–405.
  564. Ghani, S., Kwon, B. C., Lee, S., Yi, J. S., & Elmqvist, N. (2013). Visual analytics for multimodal social network analysis: A design study with social scientists. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2032–2041.
  565. Zafarani, R., Abbasi, M. A., & Liu, H. (2014). Social media mining: an introduction. Cambridge University Press.
  566. Krzywinski, M., Birol, I., Jones, S. J. M., & Marra, M. A. (2012). Hive plots—rational approach to visualizing networks. Briefings in Bioinformatics, 13(5), 627–644.
  567. Hammoud, Z., & Kramer, F. (2020). Multilayer networks: aspects, implementations, and application in biomedicine. Big Data Analytics, 5(1), 1–18.
  568. Marcello Tomasini. (2015). An Introduction to Multilayer Networks. 3966. https://doi.org/10.13140/RG.2.2.16830.18243
  569. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001
  570. Porter, M. A. (2018). What Is... a Multilayer Network? Notices of the American Mathematical Society, 65(11), 1. https://doi.org/10.1090/noti1746
  571. Marcello Tomasini. (2015). An Introduction to Multilayer Networks. 3966. https://doi.org/10.13140/RG.2.2.16830.18243
  572. Singh, H., & Sharma, R. (2012). Role of adjacency matrix & adjacency list in graph theory. International Journal of Computers & Technology, 3(1), 179–183.
  573. Duncan, A. (2004). Powers of the adjacency matrix and the walk matrix.
  574. Kuo, F. Y., & Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices of the AMS, 52(11), 1320–1328.
  575. Bothorel, G., Serrurier, M., & Hurter, C. (2013). Visualization of frequent itemsets with nested circular layout and bundling algorithm. International Symposium on Visual Computing, 396–405.
  576. Jalali, A. (2016). Supporting social network analysis using chord diagram in process mining. International Conference on Business Informatics Research, 16–32.
  577. Henry, N., Fekete, J.-D., & McGuffin, M. J. (2007). NodeTrix: a hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1302–1309.
  578. Cordasco, G., & Gargano, L. (2012). Label propagation algorithm: A semi-synchronous approach. Int. J. of Social Network Mining, 1, 3–26. https://doi.org/10.1504/IJSNM.2012.045103
  579. Funk, S., & Jansen, V. A. A. (2010). Interacting epidemics on overlay networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81(3 Pt 2), 036118. https://doi.org/10.1103/PhysRevE.81.036118
  580. Allard, A., Noël, P.-A., Dubé, L. J., & Pourbohloul, B. (2009). Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys. Rev. E, 79(3), 036113. https://doi.org/10.1103/PhysRevE.79.036113
  581. Bianconi, G. (2018). Multilayer networks: structure and function. Oxford university press.
  582. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 76(3), 036106. https://doi.org/10.1103/PhysRevE.76.036106
  583. Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3). https://doi.org/10.1103/PhysRevE.74.036104
  584. Knuth, D. E. (1994). The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press. https://www-cs-faculty.stanford.edu/ knuth/sgb.html
  585. Nooy, W. de. (1999). A literary playground: Literary criticism and balance theory. Poetics, 26(5-6), 385–404. https://doi.org/10.1016/S0304-422X(99)00009-1
  586. Gleiser, P. M. (2007). How to become a superhero. https://doi.org/10.48550/arXiv.0708.2410
  587. Faulkner, R. R. (2008). Music on demand: Composers and careers in the Hollywood film industry (3. paperback printing). Transaction.
  588. Tir, J., Schafer, P., Diehl, P. F., & Goertz, G. (1998). Territorial Changes, 1816–1996: Procedures and Data. Conflict Management and Peace Science, 16(1), 89–97. https://doi.org/10.1177/073889429801600105
  589. Gleiser, P. M., & Danon, L. (2003). COMMUNITY STRUCTURE IN JAZZ. ADVANCES IN COMPLEX SYSTEMS, 06(04), 565–573. https://doi.org/10.1142/S0219525903001067
  590. Breiger, R. L., & Pattison, P. E. (1986). Cumulated social roles: The duality of persons and their algebras. Social Networks, 8(3), 215–256. https://doi.org/10.1016/0378-8733(86)90006-7
  591. Shahriari, M., Krott, S., & Klamma, R. (2015). WebOCD: A RESTful Web-based Overlapping Community Detection Framework. Proceedings of the 15th International Conference on Knowledge Technologies and Data-Driven Business, 51;1–4. https://www.researchgate.net/publication/283319861_WebOCD_a_RESTful_web-based_overlapping_community_detection_framework
  592. Correlates of War Project. Colonial Contiguity Data, 1816-2016. Version 3.1.
  593. Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259–1319. http://www.jstor.org/stable/2781822
  594. Gabasova, E. (2016). Star Wars social network. https://doi.org/10.5281/zenodo.1411479